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Introduction

Some real-time systems have hard time requirements.

Even if logic was designed flawless, hardware faults can occur. E.g., Soft errors

Qantas Flight 72 (2008) [1] — A single bit error in one of the air data inertial
reference units (ADIRU) caused the autopilot to dive the aircraft, resulting serious
injuries.

How do we make them fault tolerant?

[1] Bureau, Australian Transport Safety. "In-Flight Upset, 154 km West of Learmonth." Western Australia 7 (2008).



Hardware techniques?

J0E1+1=3 How does the processor know this is wrong?
lllll

30E 1+ 1 =2 -—— Pick the most common outcome
lll'l

JO0E1+1=2
lllll —

* Add processors doing same job

-> Hardware techniques require additional hardware components.
-> Hardware being complex, increasing hardware fault rates [2].

[2] Canal, Ramon, et al. "Predictive reliability and fault management in exascale systems: State of the art and perspectives." ACM Computing
Surveys (CSUR) 53.5 (2020): 1-32. 3



Time redundancy fault tolerance [3]

1. Re-execution
-> Restart the same task when failure is detected
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-> Create a checkpoint, which saves the state of the task, and restarts from the

checkpoint.
Restore from CKPT;
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[3] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance in real-time systems: Identifying the future research questions,” ACM 4

Computing Surveys, vol. 55, no. 14s, pp. 1-30, 2023.



Tradeoff Between Timeliness and Reliability

« Enhancing fault tolerance through re-execution or checkpointing can negatively
impact schedulability due to fault detection and recovery.
-> Deadlines can be missed!

* However, testing this is not easy.
Especially when we want deterministic results.

« We want to ensure if deadlines always miss, or not.
-> We want deterministic results!

« However, failures can lead to non-deterministic results...



Motivating Example
« e.g.) Task split into 4 segments (3 checkpoints)
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« Same number and sequence of failures can lead to different deadline behaviors
depending on failure timing.
-> Unreliable schedulability analysis.
-> No repeatability

« How should we verify that scheduling including fault tolerance
techniques meet their deadlines with determinism?



Tasks Models, Assumptions and Timing Semantics

* i : Task number « CE. .- Segment's worst case
Task Model * j : Instance number Lk == : :
(n) _ execution time (WCET) including
T. . * k : Segment number . :
i,j:[k] . Failure detection and recovery.
* n : Number of executions of segment
» Scheduling is weakly hard real-time and non-preemptive.
* Failures can occur in any segment.
Sygtaeimrgnd » Watchdogs detect all failures.

A . * Detection/recovery add small time overhead.
ssumptions No failures during failure detection and recovery.
» Each task can abort at checkpoints.

* Physical Time: Wall clock time.
* Logical Time: Abstraction of ordering of events.
* Logical Execution Time (LET): Abstraction of actual execution time.

Timing
Semantics



Approach: Advancing Logical Time

« When segment fails, advance the logical time as much as the WCET Ci’f[k] of the
segment.
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Ensure determinism.

Results only depend on the sequence of failures (number, order), not their
timing.

Motivational example leads to two different results, which is non-deterministic.
-> \We guarantee the system fails or succeeds deterministically.

Limitations: This approach is very conservative.



Approach: Proactive Task Instance Abortion

« Monitor both task deadlines, and the cumulative execution time.
- Abort instances if they can no longer meet deadlines.
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* Avoid utilization waste.
* Prevent deadline misses propagating to next instances.
« Start next instance on time (can be critical when data freshness is important)



Proposed: Enhancement to Execution Model

* Advancing CiF:[k] is conservative, which can lead to many deadline misses.
* |nefficiency -> System always advances logical time including recovery time.
* New approach: Distinguish WCET as Succeed (Cis:[k]) and Failure (Cf[k]).

* Succeed WCET (Cf[k]): Exclude failure detection and recovery time.
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Runtime Design

\
|LT§ H?NAGNUCA,\A: coordination language for deterministic, time-sensitive programs.
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Evaluation

e Use same task, actual execution time is uniformly sampled (80% to 100%).
e 10,000 runs with failure rate: 0.5%, 1% 5% and 10%.

B Bascline  : Re-executes failed segment
[ Proposedl : Advances logical time as much as Cfj

[ ] PI"OPOSedz : Advances logical time depending on success (Cﬁ[k]) and failure (Cf[k])
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Failure Rate  0.5% 1% 5% 10% 0.5% 1% 5% 10% 0.5% 1% 5% 10% 0.5% 1% 5% 10%
(a) Deadline misses. (b) Execution failures. (c) Sum of deadline misses (d) CPU utilization (%).

and execution failures.

e Proposed?2 approach has a smaller number in the overall failures than the
Baseline, which are the sum of deadline misses and execution failures.
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Case Study : ROSACE Benchmark

e ROSACE: Research Open-source Avionics and Control Engineering [2][3][4]
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[2] C. Pagetti, D. Saussi‘e, R. Gratia, E. Noulard, and P. Siron, “The ROSACE case study: From Simulink specification to multi/many-core execution,” in
2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2014, pp. 309-318.

[3] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence problem in CPS simulations: the R-ROSACE case study,” in 9th European
Congress Embedded Real Time Software and Systems ERTS2 2018, 2018, pp. pp-1.

[4] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller — the ROSACE case study,” https://github.com/If-lang/playground-lingua- 13
francal/tree/main/examples/C/src/rosace, Lingua Franca Playground.
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Case Study : ROSACE Benchmark

o Inject failures at 40% rate into the true airspeed (V,) and vertical speed (V,)

controller.

11000 1 —

7

10500

Altitude (m)

-230.05

-230.00

Airspeed (m/s)

250 500

Time (s)

(a) Original ROSACE software
with failure injection.

In (a), the aircraft oscillates and destabilizes under faults.
e In(b), the aircraft recovers quickly and maintains stable.
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(b) Modified ROSACE for fault tolerance simulation
with failure injection and Proposed2.
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e Deterministic execution models

o Ensure determinism in fault-tolerant real time systems.
e Simulation runtime

o Implemented using Lingua Franca (LF) to support realistic software-
level simulations

. https://github.com
e Validated performance /asu-kim/fault-

tolerant-real-time

o Experiments and ROSACE case study show deadline misses are
avoided and utilization waste reduced.
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