
Deterministic Modeling and Simulation 
of Fault-Tolerant Real-Time Software 

Dongha Kim and Hokeun Kim
School of Computing and Augmented Intelligence

Arizona State University

1

Time-Centric Reactive Software (TCRS '25) Workshop
at ESWEEK 2025, Taipei, Taiwan, on October 2, 2025

Websites: 
• https://labs.engineering.asu.edu/kim/ 
• https://jakio815.github.io/
• https://hokeun.github.io/

Contact: 
• dongha@asu.edu
• hokeun@asu.edu

https://labs.engineering.asu.edu/kim/
https://labs.engineering.asu.edu/kim/
https://jakio815.github.io/
https://jakio815.github.io/
https://hokeun.github.io/
https://hokeun.github.io/
mailto:dongha@asu.edu
mailto:dongha@asu.edu
mailto:hokeun@asu.edu
mailto:hokeun@asu.edu


Introduction
• Some real-time systems have hard time requirements.

2[1] Bureau, Australian Transport Safety. "In-Flight Upset, 154 km West of Learmonth." Western Australia 7 (2008).

• Even if logic was designed flawless, hardware faults can occur. E.g., Soft errors

• Qantas Flight 72 (2008) [1] – A single bit error in one of the air data inertial 
reference units (ADIRU) caused the autopilot to dive the aircraft, resulting serious 
injuries.

• How do we make them fault tolerant?



Hardware techniques?

• Add processors doing same job

3

1 + 1 = 3  How does the processor know this is wrong?

1 + 1 = 2   Pick the most common outcome

1 + 1 = 2 

[2] Canal, Ramon, et al. "Predictive reliability and fault management in exascale systems: State of the art and perspectives." ACM Computing 
Surveys (CSUR) 53.5 (2020): 1-32.

-> Hardware techniques require additional hardware components.
 -> Hardware being complex, increasing hardware fault rates [2].



Time redundancy fault tolerance [3]
1. Re-execution
 -> Restart the same task when failure is detected.

4

2. Checkpoint / Restart (Restore)
 -> Create a checkpoint, which saves the state of the task, and restarts from the 

checkpoint.

𝜏!
(!) 𝜏$

(!)

𝑡No Fault

𝜏!
(!) 𝜏!

($) 𝜏$
(!)

𝑡One Fault

𝜏!,! 𝜏!,$C 𝜏!,&C

𝐶𝐾𝑃𝑇!𝐶𝐾𝑃𝑇"

𝑡No Fault

𝜏!,! 𝜏!,$C 𝜏!,&C

𝐶𝐾𝑃𝑇! 𝐶𝐾𝑃𝑇"
𝜏!,$R

𝑅𝑒𝑠𝑡𝑜𝑟𝑒	𝑓𝑟𝑜𝑚	𝐶𝐾𝑃𝑇!

𝑡One Fault
[3] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance in real-time systems: Identifying the future research questions,” ACM 
Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023. 



Tradeoff Between Timeliness and Reliability

• Enhancing fault tolerance through re-execution or checkpointing can negatively 
impact schedulability due to fault detection and recovery.
-> Deadlines can be missed!

5

• However, testing this is not easy. 
Especially when we want deterministic results.

• We want to ensure if deadlines always miss, or not.
-> We want deterministic results!

• However, failures can lead to non-deterministic results…



Motivating Example

• Same number and sequence of failures can lead to different deadline behaviors 
depending on failure timing.
-> Unreliable schedulability analysis.
-> No repeatability

6

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 1

Deterministic Modeling and Simulation of
Fault-Tolerant Real-Time Software

Dongha Kim and Hokeun Kim , Member, IEEE

Abstract—Time redundancy, a fault tolerance mechanism

without extra hardware, negatively affects response times while

improving fault tolerance. Although real-time scheduling in fault-

tolerant systems is a well-studied area, there has not been a

deterministic model supporting realistic simulation. To address

this gap, we propose deterministic execution models of fault-

tolerant real-time software, with a simulation of user software.

Our evaluation shows that the proposed execution models de-

terministically avoid deadline misses of real-time software under

failures. Our case study using ROSACE flight control software

demonstrates our simulation method with real-world software.

Index Terms—Determinism, Modeling, Simulation, Fault-

tolerance, Real-time systems, Time redundancy

I. INTRODUCTION AND MOTIVATION

T
IME redundancy of computation [1], [2], for example,
re-execution/re-computation [3] or checkpointing with

restart/recovery [4], has been widely used for safety-critical
systems to achieve fault tolerance without additional hardware.

However, such time redundancy-based techniques often
impact the timeliness of real-time systems; for example, by
negatively affecting timing due to the recovery overhead [5].
In addition, failures can lead to nondeterminism, resulting in
inconsistent results even with the same inputs and initial states,
making analysis and testing much more challenging [6].

To illustrate, we use an example shown in Fig. 1, which has
a hard-real time, checkpointed task with a deadline of 50 ms,
divided into four re-executable segments, intervals between
checkpoints, each of which has the worst-case execution time
(WCET) of 10 ms. Here, we present three possible scenarios:
• Fig. 1a: The task meets the deadline without any failure.
• Fig. 1b: 2nd segment fails twice but meets the deadline.
• Fig. 1c: 2nd segment fails twice, leading to a deadline miss.
As illustrated, even with the same number of failures in the
same segment, the task may or may not meet the deadline,
depending on the timing of the failure within the segment.
This leads to nondeterministic timing behavior, rendering po-
tentially devastating deadline misses undetected during testing.

To address this problem, this paper proposes deterministic
execution models capable of simulating fault-tolerant real-time
software with an executable implementation.

(a) The task completes before the deadline without failure.

!"#1
0 10

!"#2!"#2
1814

!"#3 !"#4
28 48

!"#2
38 time (ms)

(b) The task completes with two re-executions of the failed segment, seg2
(the 2nd segment). However, the task still meets the deadline.

(c) The task misses the deadline with two re-executions of seg2.
Fig. 1: Nondeterministic timing behavior of fault-tolerant real-time software
based on time redundancy of re-executions.

To the best of our knowledge, no model supporting simu-
lation with actual software has been proposed. For example,
state-of-the-art fault-tolerant mixed-criticality systems such as
EASRC [7] and RTailor [8] only support abstract task models,
not simulations with actual software tasks.

II. PROBLEM FORMULATION AND BACKGROUND

Task Model Formulation: Our task model is based on
the state-of-the-art fault-tolerant, checkpointed, real-time task
model by Reghenzani et al. [9] We use a task set T =
{ω1, ..., ωn} with n tasks, each of which is defined as ωi =
(Si,Ci, Ti, Di). Si represents the set of m segments with
m → 1 checkpoints, Si = {ωi:[1], ..., ωi:[m]}. Ci is the set
of worst-case execution times (WCETs) for m segments,
Ci = {Ci:[1], ..., Ci:[m]}. Ti and Di are the period and deadline
of ωi, respectively, where Di ↑ Ti. We denote a segment of ωi
as ωi:[k], with the segment index k starting from 1. To represent
multiple instances and retries (re-executions), we extend the
notation to ω (r)i,j:[k], which indicates jth instance of ωi with rth
execution (try) of the segment ωi:[k]. For example, ω (2)1,7:[3] refers
to the 2nd try of the 3rd segment in the 7th instance of ω1.
System and Failure Assumptions: We use the assumptions in
the literature [10]–[12] for fault-tolerant real-time systems.
• Failures (faults leading a segment to fail) can occur in any

segment of a task, and we know which segment has failed.
• There is a separate process (e.g., watchdog) to detect and

recover from all failures, including crashes and hangs that
prevent a segment from returning.

• Detection and recovery from a failure incur a small, addi-
tional execution time overhead.

• Failures do not occur during failure detection and recovery.
From now on, we use CF

i:[k] for each segment’s WCET, to
include the execution time overhead for Failure detection and
recovery, with a superscript F added to Ci:[k].
Timing Semantics: Our timing semantics distinguishes phys-
ical and logical time. Physical time is the actual wall-clock
time in the real world, measured by a device’s physical clocks.
Logical time is an abstraction that defines the ordering of
events. We adopt the concept of logical execution time (LET)
introduced in Giotto [13]. LET abstracts the actual execution
time of a real-time program, defining the execution time
interval between reading inputs and producing outputs.

III. PROPOSED DETERMINISTIC EXECUTION MODELS

A. Proposed Execution Model with Logical Time Advancement

We propose an execution model that ensures deterministic
deadline-timing behavior using LET. Our key idea is to ad-
vance the system’s logical time by the WCET of each segment,
including the failed ones that start from the last checkpoint.

0000–0000/00$00.00 © 2025 IEEE

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 1

Deterministic Modeling and Simulation of
Fault-Tolerant Real-Time Software

Dongha Kim and Hokeun Kim , Member, IEEE

Abstract—Time redundancy, a fault tolerance mechanism

without extra hardware, negatively affects response times while

improving fault tolerance. Although real-time scheduling in fault-

tolerant systems is a well-studied area, there has not been a

deterministic model supporting realistic simulation. To address

this gap, we propose deterministic execution models of fault-

tolerant real-time software, with a simulation of user software.

Our evaluation shows that the proposed execution models de-

terministically avoid deadline misses of real-time software under

failures. Our case study using ROSACE flight control software

demonstrates our simulation method with real-world software.

Index Terms—Determinism, Modeling, Simulation, Fault-

tolerance, Real-time systems, Time redundancy

I. INTRODUCTION AND MOTIVATION

T
IME redundancy of computation [1], [2], for example,
re-execution/re-computation [3] or checkpointing with

restart/recovery [4], has been widely used for safety-critical
systems to achieve fault tolerance without additional hardware.

However, such time redundancy-based techniques often
impact the timeliness of real-time systems; for example, by
negatively affecting timing due to the recovery overhead [5].
In addition, failures can lead to nondeterminism, resulting in
inconsistent results even with the same inputs and initial states,
making analysis and testing much more challenging [6].

To illustrate, we use an example shown in Fig. 1, which has
a hard-real time, checkpointed task with a deadline of 50 ms,
divided into four re-executable segments, intervals between
checkpoints, each of which has the worst-case execution time
(WCET) of 10 ms. Here, we present three possible scenarios:
• Fig. 1a: The task meets the deadline without any failure.
• Fig. 1b: 2nd segment fails twice but meets the deadline.
• Fig. 1c: 2nd segment fails twice, leading to a deadline miss.
As illustrated, even with the same number of failures in the
same segment, the task may or may not meet the deadline,
depending on the timing of the failure within the segment.
This leads to nondeterministic timing behavior, rendering po-
tentially devastating deadline misses undetected during testing.

To address this problem, this paper proposes deterministic
execution models capable of simulating fault-tolerant real-time
software with an executable implementation.

(a) The task completes before the deadline without failure.

(b) The task completes with two re-executions of the failed segment, seg2
(the 2nd segment). However, the task still meets the deadline.

!"#1 !"#3 !"#4
0 10 19 38 48

!"#2!"#2
28

!"#2
Deadline miss

time (ms)

(c) The task misses the deadline with two re-executions of seg2.
Fig. 1: Nondeterministic timing behavior of fault-tolerant real-time software
based on time redundancy of re-executions.

To the best of our knowledge, no model supporting simu-
lation with actual software has been proposed. For example,
state-of-the-art fault-tolerant mixed-criticality systems such as
EASRC [7] and RTailor [8] only support abstract task models,
not simulations with actual software tasks.

II. PROBLEM FORMULATION AND BACKGROUND

Task Model Formulation: Our task model is based on
the state-of-the-art fault-tolerant, checkpointed, real-time task
model by Reghenzani et al. [9] We use a task set T =
{ω1, ..., ωn} with n tasks, each of which is defined as ωi =
(Si,Ci, Ti, Di). Si represents the set of m segments with
m → 1 checkpoints, Si = {ωi:[1], ..., ωi:[m]}. Ci is the set
of worst-case execution times (WCETs) for m segments,
Ci = {Ci:[1], ..., Ci:[m]}. Ti and Di are the period and deadline
of ωi, respectively, where Di ↑ Ti. We denote a segment of ωi
as ωi:[k], with the segment index k starting from 1. To represent
multiple instances and retries (re-executions), we extend the
notation to ω (r)i,j:[k], which indicates jth instance of ωi with rth
execution (try) of the segment ωi:[k]. For example, ω (2)1,7:[3] refers
to the 2nd try of the 3rd segment in the 7th instance of ω1.
System and Failure Assumptions: We use the assumptions in
the literature [10]–[12] for fault-tolerant real-time systems.
• Failures (faults leading a segment to fail) can occur in any

segment of a task, and we know which segment has failed.
• There is a separate process (e.g., watchdog) to detect and

recover from all failures, including crashes and hangs that
prevent a segment from returning.

• Detection and recovery from a failure incur a small, addi-
tional execution time overhead.

• Failures do not occur during failure detection and recovery.
From now on, we use CF

i:[k] for each segment’s WCET, to
include the execution time overhead for Failure detection and
recovery, with a superscript F added to Ci:[k].
Timing Semantics: Our timing semantics distinguishes phys-
ical and logical time. Physical time is the actual wall-clock
time in the real world, measured by a device’s physical clocks.
Logical time is an abstraction that defines the ordering of
events. We adopt the concept of logical execution time (LET)
introduced in Giotto [13]. LET abstracts the actual execution
time of a real-time program, defining the execution time
interval between reading inputs and producing outputs.

III. PROPOSED DETERMINISTIC EXECUTION MODELS

A. Proposed Execution Model with Logical Time Advancement

We propose an execution model that ensures deterministic
deadline-timing behavior using LET. Our key idea is to ad-
vance the system’s logical time by the WCET of each segment,
including the failed ones that start from the last checkpoint.

0000–0000/00$00.00 © 2025 IEEE

• e.g.) Task split into 4 segments (3 checkpoints)

• How should we verify that scheduling including fault tolerance 
techniques meet their deadlines with determinism?



Tasks Models, Assumptions and Timing Semantics
• 𝑖 : Task number
• 𝑗 : Instance number
• 𝑘 : Segment number
• 𝑛 : Number of executions of segment

Task Model 
𝜏#,%:[(]
(+)

• Scheduling is weakly hard real-time and non-preemptive.
• Failures can occur in any segment.
• Watchdogs detect all failures.
• Detection/recovery add small time overhead.
• No failures during failure detection and recovery.
• Each task can abort at checkpoints.

System and 
Failure 

Assumptions

• Physical Time: Wall clock time.
• Logical Time: Abstraction of ordering of events.
• Logical Execution Time (LET): Abstraction of actual execution time.

Timing 
Semantics

7

• 𝐶#:[(]- : Segment’s worst case 
execution time (WCET) including 
Failure detection and recovery.



Approach: Advancing Logical Time
• When segment fails, advance the logical time as much as the WCET 𝐶#:[(]- 	 of the 

segment.

𝑠#,%:[(]
+.! = 𝑠#,%:[(]

+ + 𝐶#:[(]-

• Ensure determinism.

• Results only depend on the sequence of failures (number, order), not their 
timing.

• Motivational example leads to two different results, which is non-deterministic.
-> We guarantee the system fails or succeeds deterministically.

• Limitations: This approach is very conservative.
8

𝜏!,!:[!]
(!)

0 10

𝜏!,!:[%]
(!) 𝜏!,!:[%]

(%)

20 logical	time	(msec)14 30 5040



Approach: Proactive Task Instance Abortion
• Monitor both task deadlines, and the cumulative execution time.
• Abort instances if they can no longer meet deadlines.

9

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 2

(a) A task instance misses the deadline due to previously failed segments, even
if the remaining segments successfully complete, delaying the next instance.

τ!,#: !!τ!,!: !!

0 10 20 4030 logical	time	(msec)

τ!,!: #! τ!,!: ##

(b) Our scheduler design to proactively abort a task instance expected to miss
the deadline, allowing the next instance to start execution on time.
Fig. 2: Deterministic and proactive task instance abortion to prevent deadline
misses, based on our task model formulation.

(a) Always advance logical time by CF
i:[k], no matter whether a

segment succeeds or fails.

(b) Advance logical time by CS
i:[k] when a segment succeeds, and by

CF
i:[k] when a segment fails.

Fig. 3: Enhanced method of advancing logical time with extra assumptions.
including the failed ones that start from the last checkpoint.
For example, if the nth try of ωi,j:[k] fails, the start time of
the next (n+ 1’th) try, s(n+1)

i,j:[k] , is scheduled as:

s(n+1)
i,j:[k] = f (n)

i,j:[k] = s(n)i,j:[k] + CF
i:[k]. (1)

The start time is scheduled at f (n)
i,j:[k], the finish time of the

nth try of the segment. This ensures that the same sequence of
failures, including the same order and number of failures, will
always result in the same outcome, regardless of the actual
time at which each failure occurs.

Our approach ensures determinism in the presence of un-
predictable failures by conservatively yet deterministically
advancing logical time based on the WCET of failed segments.
This also makes the timing behavior depend only on the
sequence of failures, not on their timing, unlike the example
in Fig. 1, where the same number of failures leads to different
results. This determinism simplifies analysis and makes testing
repeatable, which is crucial for safety-critical systems.

B. Deterministic and Proactive Task Instance Abortion

The determinism of our execution model in Section III-A
enables the design of a scheduler that deterministically and
proactively aborts task instances predicted to miss deadlines.

Fig. 2 illustrates how we can predictably abort and discard
task instances. We use a task with 4 segments as an example,
where each segment’s CF

i:[k] is 10 ms, and Di is 50 ms. Fig. 2a
shows that after the 2nd segment fails twice, even though the
remaining segments succeed, the task will miss the deadline.
To address this, in Fig. 2b, our scheduler tracks the time left
until the deadline and the elapsed time of the task’s instance.
Then, the scheduler detects that the remaining segments will
not be finished before the deadline. Instead of executing these
segments unnecessarily, our scheduler aborts the remaining
segments, allowing future task instances to begin on time.

Our scheduler also reduces the waste of processor utiliza-
tion. Specifically, we can prevent one deadline miss from
propagating and causing further deadline misses that can waste
utilization. The next instance of the task can start on time,
which is critical when data freshness is important.

C. Enhancement to Execution Model with Extra Assumptions

Our approach advances logical time by CF
i:[k] of each

segment, which includes the time required for failure detection
and recovery. However, this approach introduces inefficiency:
even when a segment executes successfully without any fail-
ure, the system still advances logical time as if recovery had
occurred. This conservative time advancement reduces system
utilization and may require significant over-provisioning of
computational resources to meet timing constraints.

To address this, we extend our task model to introduce
another WCET, CS

i:[k], which is defined as the WCET when
a segment Succeeds, excluding the failure recovery time. The
idea of modeling multiple WCETs based on failure behavior
has been previously explored [12], [16]. The failure recovery
time included in CF

i:[k] is unnecessary to be considered when a
segment succeeds. Thus, our enhanced approach advances the
logical time by CS

i:[k] upon success and by CF
i:[k] upon failure,

preserving determinism while improving efficiency. So, we can
determine the finish time as:

f (n)
i,j:[k] =

{
s(n)i,j:[k] + CS

i:[k], if ω (n)i:[k] succeeds.
s(n)i,j:[k] + CF

i:[k], if ω (n)i:[k] fails.
(2)

Fig. 3 illustrates how our proposed enhancement works
compared to the proposed approach in Section III-A. We use a
task with 3 segments, with each segment’s CS

i:[k] is 10 ms, and
CF

i:[k] is 11 ms, assuming 1 ms fault recovery time, and Di is
42 ms. Fig. 3a shows that one fault leads to the task’s deadline
to miss, due to advancing time very conservatively. However,
in Fig. 3b, we advance a shorter time when the segment suc-
ceeds, thus not missing the deadline. The enhanced approach
can prevent deadline violations in later segments, improving
overall schedulability without compromising determinism.

IV. SIMULATION RUNTIME DESIGN

For the simulation of our proposed execution model, we
use LINGUA FRANCA (LF) [17]. LF is an open source coor-
dination language and runtime based on reactors [18], which
are a deterministic model of computation with input/output
ports. The business logic of reactors, called reactions, is im-
plemented in the target programming language to be executed
when reactions are triggered by inputs or timed events.

LF employs the zero execution time abstraction [19], where
all reactions are logically instantaneous, although physical
time can be elapsed during the execution of reactions. Thus,
we implement LET using LF’s logical actions, which schedule
a trigger with a fixed logical time delay, effectively advancing
the logical time by WCETs when logical actions are triggered.

Our implementation builds on the C runtime of LF and is
available as open source1. Fig. 4 shows the simplified version
of the Task reactor with following key sub-reactors.

1Available at our open-source repository here: https://github.com/asu-kim/
fault-tolerant-real-time

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 2

τ!,!: !! τ!,!: $! τ!,!: %!

0 10 20 40

τ!,!: &$τ!,!: &!

30

τ!,!: &&
Deadline miss

logical	time	(msec)

Segment Missing DeadlineSegment Success Segment Failure
Next Instance

(a) A task instance misses the deadline due to previously failed segments, even
if the remaining segments successfully complete, delaying the next instance.

(b) Our scheduler design to proactively abort a task instance expected to miss
the deadline, allowing the next instance to start execution on time.
Fig. 2: Deterministic and proactive task instance abortion to prevent deadline
misses, based on our task model formulation.

(a) Always advance logical time by CF
i:[k], no matter whether a

segment succeeds or fails.

(b) Advance logical time by CS
i:[k] when a segment succeeds, and by

CF
i:[k] when a segment fails.

Fig. 3: Enhanced method of advancing logical time with extra assumptions.
including the failed ones that start from the last checkpoint.
For example, if the nth try of ωi,j:[k] fails, the start time of
the next (n+ 1’th) try, s(n+1)

i,j:[k] , is scheduled as:

s(n+1)
i,j:[k] = f (n)

i,j:[k] = s(n)i,j:[k] + CF
i:[k]. (1)

The start time is scheduled at f (n)
i,j:[k], the finish time of the

nth try of the segment. This ensures that the same sequence of
failures, including the same order and number of failures, will
always result in the same outcome, regardless of the actual
time at which each failure occurs.

Our approach ensures determinism in the presence of un-
predictable failures by conservatively yet deterministically
advancing logical time based on the WCET of failed segments.
This also makes the timing behavior depend only on the
sequence of failures, not on their timing, unlike the example
in Fig. 1, where the same number of failures leads to different
results. This determinism simplifies analysis and makes testing
repeatable, which is crucial for safety-critical systems.

B. Deterministic and Proactive Task Instance Abortion

The determinism of our execution model in Section III-A
enables the design of a scheduler that deterministically and
proactively aborts task instances predicted to miss deadlines.

Fig. 2 illustrates how we can predictably abort and discard
task instances. We use a task with 4 segments as an example,
where each segment’s CF

i:[k] is 10 ms, and Di is 50 ms. Fig. 2a
shows that after the 2nd segment fails twice, even though the
remaining segments succeed, the task will miss the deadline.
To address this, in Fig. 2b, our scheduler tracks the time left
until the deadline and the elapsed time of the task’s instance.
Then, the scheduler detects that the remaining segments will
not be finished before the deadline. Instead of executing these
segments unnecessarily, our scheduler aborts the remaining
segments, allowing future task instances to begin on time.

Our scheduler also reduces the waste of processor utiliza-
tion. Specifically, we can prevent one deadline miss from
propagating and causing further deadline misses that can waste
utilization. The next instance of the task can start on time,
which is critical when data freshness is important.

C. Enhancement to Execution Model with Extra Assumptions

Our approach advances logical time by CF
i:[k] of each

segment, which includes the time required for failure detection
and recovery. However, this approach introduces inefficiency:
even when a segment executes successfully without any fail-
ure, the system still advances logical time as if recovery had
occurred. This conservative time advancement reduces system
utilization and may require significant over-provisioning of
computational resources to meet timing constraints.

To address this, we extend our task model to introduce
another WCET, CS

i:[k], which is defined as the WCET when
a segment Succeeds, excluding the failure recovery time. The
idea of modeling multiple WCETs based on failure behavior
has been previously explored [12], [16]. The failure recovery
time included in CF

i:[k] is unnecessary to be considered when a
segment succeeds. Thus, our enhanced approach advances the
logical time by CS

i:[k] upon success and by CF
i:[k] upon failure,

preserving determinism while improving efficiency. So, we can
determine the finish time as:

f (n)
i,j:[k] =

{
s(n)i,j:[k] + CS

i:[k], if ω (n)i:[k] succeeds.
s(n)i,j:[k] + CF

i:[k], if ω (n)i:[k] fails.
(2)

Fig. 3 illustrates how our proposed enhancement works
compared to the proposed approach in Section III-A. We use a
task with 3 segments, with each segment’s CS

i:[k] is 10 ms, and
CF

i:[k] is 11 ms, assuming 1 ms fault recovery time, and Di is
42 ms. Fig. 3a shows that one fault leads to the task’s deadline
to miss, due to advancing time very conservatively. However,
in Fig. 3b, we advance a shorter time when the segment suc-
ceeds, thus not missing the deadline. The enhanced approach
can prevent deadline violations in later segments, improving
overall schedulability without compromising determinism.

IV. SIMULATION RUNTIME DESIGN

For the simulation of our proposed execution model, we
use LINGUA FRANCA (LF) [17]. LF is an open source coor-
dination language and runtime based on reactors [18], which
are a deterministic model of computation with input/output
ports. The business logic of reactors, called reactions, is im-
plemented in the target programming language to be executed
when reactions are triggered by inputs or timed events.

LF employs the zero execution time abstraction [19], where
all reactions are logically instantaneous, although physical
time can be elapsed during the execution of reactions. Thus,
we implement LET using LF’s logical actions, which schedule
a trigger with a fixed logical time delay, effectively advancing
the logical time by WCETs when logical actions are triggered.

Our implementation builds on the C runtime of LF and is
available as open source1. Fig. 4 shows the simplified version
of the Task reactor with following key sub-reactors.

1Available at our open-source repository here: https://github.com/asu-kim/
fault-tolerant-real-time

• Avoid utilization waste.
• Prevent deadline misses propagating to next instances.
• Start next instance on time (can be critical when data freshness is important)



Proposed: Enhancement to Execution Model
• Advancing 𝐶/:[2]4 	 is conservative, which can lead to many deadline misses.
• Inefficiency -> System always advances logical time including recovery time.
• New approach: Distinguish WCET as Succeed (𝐶/: 2

5 ) and Failure (𝐶/: 2
4 ). 

• Succeed WCET (𝐶/: 25 ): Exclude failure detection and recovery time.

𝑓#,%:[(]
+ = ,

𝑠#,%:[(]
+ + 𝐶#: (

/ , (𝑠𝑒𝑔𝑚𝑒𝑛𝑡	𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑠)

𝑠#,%: (
+ + 𝐶#: (

- , 𝑠𝑒𝑔𝑚𝑒𝑛𝑡	𝑓𝑎𝑖𝑙𝑠 	

10

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 2

(a) A task instance misses the deadline due to previously failed segments, even
if the remaining segments successfully complete, delaying the next instance.

(b) Our scheduler design to proactively abort a task instance expected to miss
the deadline, allowing the next instance to start execution on time.
Fig. 2: Deterministic and proactive task instance abortion to prevent deadline
misses, based on our task model formulation.

(a) Always advance logical time by CF
i:[k], no matter whether a

segment succeeds or fails.

τ!,#: !!

0 10 21 logical	time	(msec)31 41

τ!,!: !! τ!,!: #!

42

τ!,!: ## τ!,!: 2!

!!: #$!!: #%

(b) Advance logical time by CS
i:[k] when a segment succeeds, and by

CF
i:[k] when a segment fails.

Fig. 3: Enhanced method of advancing logical time with extra assumptions.
including the failed ones that start from the last checkpoint.
For example, if the nth try of ωi,j:[k] fails, the start time of
the next (n+ 1’th) try, s(n+1)

i,j:[k] , is scheduled as:

s(n+1)
i,j:[k] = f (n)

i,j:[k] = s(n)i,j:[k] + CF
i:[k]. (1)

The start time is scheduled at f (n)
i,j:[k], the finish time of the

nth try of the segment. This ensures that the same sequence of
failures, including the same order and number of failures, will
always result in the same outcome, regardless of the actual
time at which each failure occurs.

Our approach ensures determinism in the presence of un-
predictable failures by conservatively yet deterministically
advancing logical time based on the WCET of failed segments.
This also makes the timing behavior depend only on the
sequence of failures, not on their timing, unlike the example
in Fig. 1, where the same number of failures leads to different
results. This determinism simplifies analysis and makes testing
repeatable, which is crucial for safety-critical systems.

B. Deterministic and Proactive Task Instance Abortion

The determinism of our execution model in Section III-A
enables the design of a scheduler that deterministically and
proactively aborts task instances predicted to miss deadlines.

Fig. 2 illustrates how we can predictably abort and discard
task instances. We use a task with 4 segments as an example,
where each segment’s CF

i:[k] is 10 ms, and Di is 50 ms. Fig. 2a
shows that after the 2nd segment fails twice, even though the
remaining segments succeed, the task will miss the deadline.
To address this, in Fig. 2b, our scheduler tracks the time left
until the deadline and the elapsed time of the task’s instance.
Then, the scheduler detects that the remaining segments will
not be finished before the deadline. Instead of executing these
segments unnecessarily, our scheduler aborts the remaining
segments, allowing future task instances to begin on time.

Our scheduler also reduces the waste of processor utiliza-
tion. Specifically, we can prevent one deadline miss from
propagating and causing further deadline misses that can waste
utilization. The next instance of the task can start on time,
which is critical when data freshness is important.

C. Enhancement to Execution Model with Extra Assumptions

Our approach advances logical time by CF
i:[k] of each

segment, which includes the time required for failure detection
and recovery. However, this approach introduces inefficiency:
even when a segment executes successfully without any fail-
ure, the system still advances logical time as if recovery had
occurred. This conservative time advancement reduces system
utilization and may require significant over-provisioning of
computational resources to meet timing constraints.

To address this, we extend our task model to introduce
another WCET, CS

i:[k], which is defined as the WCET when
a segment Succeeds, excluding the failure recovery time. The
idea of modeling multiple WCETs based on failure behavior
has been previously explored [12], [16]. The failure recovery
time included in CF

i:[k] is unnecessary to be considered when a
segment succeeds. Thus, our enhanced approach advances the
logical time by CS

i:[k] upon success and by CF
i:[k] upon failure,

preserving determinism while improving efficiency. So, we can
determine the finish time as:

f (n)
i,j:[k] =

{
s(n)i,j:[k] + CS

i:[k], if ω (n)i:[k] succeeds.
s(n)i,j:[k] + CF

i:[k], if ω (n)i:[k] fails.
(2)

Fig. 3 illustrates how our proposed enhancement works
compared to the proposed approach in Section III-A. We use a
task with 3 segments, with each segment’s CS

i:[k] is 10 ms, and
CF

i:[k] is 11 ms, assuming 1 ms fault recovery time, and Di is
42 ms. Fig. 3a shows that one fault leads to the task’s deadline
to miss, due to advancing time very conservatively. However,
in Fig. 3b, we advance a shorter time when the segment suc-
ceeds, thus not missing the deadline. The enhanced approach
can prevent deadline violations in later segments, improving
overall schedulability without compromising determinism.

IV. SIMULATION RUNTIME DESIGN

For the simulation of our proposed execution model, we
use LINGUA FRANCA (LF) [17]. LF is an open source coor-
dination language and runtime based on reactors [18], which
are a deterministic model of computation with input/output
ports. The business logic of reactors, called reactions, is im-
plemented in the target programming language to be executed
when reactions are triggered by inputs or timed events.

LF employs the zero execution time abstraction [19], where
all reactions are logically instantaneous, although physical
time can be elapsed during the execution of reactions. Thus,
we implement LET using LF’s logical actions, which schedule
a trigger with a fixed logical time delay, effectively advancing
the logical time by WCETs when logical actions are triggered.

Our implementation builds on the C runtime of LF and is
available as open source1. Fig. 4 shows the simplified version
of the Task reactor with following key sub-reactors.

1Available at our open-source repository here: https://github.com/asu-kim/
fault-tolerant-real-time

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 2

(a) A task instance misses the deadline due to previously failed segments, even
if the remaining segments successfully complete, delaying the next instance.

(b) Our scheduler design to proactively abort a task instance expected to miss
the deadline, allowing the next instance to start execution on time.
Fig. 2: Deterministic and proactive task instance abortion to prevent deadline
misses, based on our task model formulation.

0 11 22 logical	time	(msec)33 44

τ.,.: 1.τ.,.: .. τ.,.: 22τ.,.: 2.

Deadline miss!!: #$

42

Segment Missing DeadlineSegment Success Segment Failure
Recovery TimeNext Instance

(a) Always advance logical time by CF
i:[k], no matter whether a

segment succeeds or fails.

(b) Advance logical time by CS
i:[k] when a segment succeeds, and by

CF
i:[k] when a segment fails.

Fig. 3: Enhanced method of advancing logical time with extra assumptions.
including the failed ones that start from the last checkpoint.
For example, if the nth try of ωi,j:[k] fails, the start time of
the next (n+ 1’th) try, s(n+1)

i,j:[k] , is scheduled as:

s(n+1)
i,j:[k] = f (n)

i,j:[k] = s(n)i,j:[k] + CF
i:[k]. (1)

The start time is scheduled at f (n)
i,j:[k], the finish time of the

nth try of the segment. This ensures that the same sequence of
failures, including the same order and number of failures, will
always result in the same outcome, regardless of the actual
time at which each failure occurs.

Our approach ensures determinism in the presence of un-
predictable failures by conservatively yet deterministically
advancing logical time based on the WCET of failed segments.
This also makes the timing behavior depend only on the
sequence of failures, not on their timing, unlike the example
in Fig. 1, where the same number of failures leads to different
results. This determinism simplifies analysis and makes testing
repeatable, which is crucial for safety-critical systems.

B. Deterministic and Proactive Task Instance Abortion

The determinism of our execution model in Section III-A
enables the design of a scheduler that deterministically and
proactively aborts task instances predicted to miss deadlines.

Fig. 2 illustrates how we can predictably abort and discard
task instances. We use a task with 4 segments as an example,
where each segment’s CF

i:[k] is 10 ms, and Di is 50 ms. Fig. 2a
shows that after the 2nd segment fails twice, even though the
remaining segments succeed, the task will miss the deadline.
To address this, in Fig. 2b, our scheduler tracks the time left
until the deadline and the elapsed time of the task’s instance.
Then, the scheduler detects that the remaining segments will
not be finished before the deadline. Instead of executing these
segments unnecessarily, our scheduler aborts the remaining
segments, allowing future task instances to begin on time.

Our scheduler also reduces the waste of processor utiliza-
tion. Specifically, we can prevent one deadline miss from
propagating and causing further deadline misses that can waste
utilization. The next instance of the task can start on time,
which is critical when data freshness is important.

C. Enhancement to Execution Model with Extra Assumptions

Our approach advances logical time by CF
i:[k] of each

segment, which includes the time required for failure detection
and recovery. However, this approach introduces inefficiency:
even when a segment executes successfully without any fail-
ure, the system still advances logical time as if recovery had
occurred. This conservative time advancement reduces system
utilization and may require significant over-provisioning of
computational resources to meet timing constraints.

To address this, we extend our task model to introduce
another WCET, CS

i:[k], which is defined as the WCET when
a segment Succeeds, excluding the failure recovery time. The
idea of modeling multiple WCETs based on failure behavior
has been previously explored [12], [16]. The failure recovery
time included in CF

i:[k] is unnecessary to be considered when a
segment succeeds. Thus, our enhanced approach advances the
logical time by CS

i:[k] upon success and by CF
i:[k] upon failure,

preserving determinism while improving efficiency. So, we can
determine the finish time as:

f (n)
i,j:[k] =

{
s(n)i,j:[k] + CS

i:[k], if ω (n)i:[k] succeeds.
s(n)i,j:[k] + CF

i:[k], if ω (n)i:[k] fails.
(2)

Fig. 3 illustrates how our proposed enhancement works
compared to the proposed approach in Section III-A. We use a
task with 3 segments, with each segment’s CS

i:[k] is 10 ms, and
CF

i:[k] is 11 ms, assuming 1 ms fault recovery time, and Di is
42 ms. Fig. 3a shows that one fault leads to the task’s deadline
to miss, due to advancing time very conservatively. However,
in Fig. 3b, we advance a shorter time when the segment suc-
ceeds, thus not missing the deadline. The enhanced approach
can prevent deadline violations in later segments, improving
overall schedulability without compromising determinism.

IV. SIMULATION RUNTIME DESIGN

For the simulation of our proposed execution model, we
use LINGUA FRANCA (LF) [17]. LF is an open source coor-
dination language and runtime based on reactors [18], which
are a deterministic model of computation with input/output
ports. The business logic of reactors, called reactions, is im-
plemented in the target programming language to be executed
when reactions are triggered by inputs or timed events.

LF employs the zero execution time abstraction [19], where
all reactions are logically instantaneous, although physical
time can be elapsed during the execution of reactions. Thus,
we implement LET using LF’s logical actions, which schedule
a trigger with a fixed logical time delay, effectively advancing
the logical time by WCETs when logical actions are triggered.

Our implementation builds on the C runtime of LF and is
available as open source1. Fig. 4 shows the simplified version
of the Task reactor with following key sub-reactors.

1Available at our open-source repository here: https://github.com/asu-kim/
fault-tolerant-real-time



Runtime Design

11

: coordination language for deterministic, time-sensitive programs.



Evaluation
● Use same task, actual execution time is uniformly sampled (80% to 100%).
● 10,000 runs with failure rate: 0.5%, 1% 5% and 10%.

12

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

: Re-executes failed segment
: Advances logical time as much as 𝐶/: 2

4  
: Advances logical time depending on success (𝐶/: 2

5 ) and failure (𝐶/: 2
4 )

● Proposed2 approach has a smaller number in the overall failures than the 
Baseline, which are the sum of deadline misses and execution failures.



Case Study : ROSACE Benchmark
● ROSACE: Research Open-source Avionics and Control Engineering [2][3][4]

13

[2] C. Pagetti, D. Saussi´e, R. Gratia, E. Noulard, and P. Siron, “The ROSACE case study: From Simulink specification to multi/many-core execution,” in 
2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[3] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence problem in CPS simulations: the R-ROSACE case study,” in 9th European 
Congress Embedded Real Time Software and Systems ERTS2 2018, 2018, pp. pp–1.
[4] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE case study,” https://github.com/lf-lang/playground-lingua-
franca/tree/main/examples/C/src/rosace, Lingua Franca Playground.

https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace


Case Study : ROSACE Benchmark
● Inject failures at 40% rate into the true airspeed (𝑉0) and vertical speed (𝑉1) 

controller.

14

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

IEEE EMBEDDED SYSTEMS LETTERS, VOL. X, NO. X, X 2025 4

Fig. 6: Comparison of three approaches, Baseline, Proposed1, and Proposed2, in terms of deadline misses, execution failures, overall failures (sum of deadline
misses and execution failures), and CPU utilization.

Fig. 7: Simulation results of the aircraft with ROSACE software using the
proposed simulation method.

are stateful, maintaining internal integrator states that accumu-
late over time. If a failure occurs and these states are corrupted
or partially updated, the control logic may become unstable.
Adding fault tolerance ensures that these internal states can be
safely recovered in the event of a failure. We run the simulation
on the same workstation used in Section V.

Fig. 7 shows simulation results of an aircraft ascending from
10,000 to 11,000 meters, while maintaining a true airspeed
of 230 m/s. We inject transient failures into the Va and Vz

controllers at an extreme rate of 40%, which can occur in
environments such as outer space with high radiation [23].

Fig. 7a and Fig. 7b show simulation results without and
with re-execution, respectively. During the climb phase, the
system maintains reasonable stability even in the presence of
these faults. This is because when a fault occurs, the engine
and elevator actuators continue to use the most recent values,
making the aircraft erroneously ascend. However, once the
aircraft reaches the target altitude and attempts to stabilize, the
lack of updated control signals causes oscillation and unstable
behavior, due to the continued use of outdated commands. On
the other hand, the ROSACE controller with fault tolerance
recovers relatively quickly from this unstable state.

This demonstrates that our deterministic execution models
can be simulated using real-world software implementations.

VII. CONCLUSION

In this paper, we propose deterministic execution models
for time redundancy-based fault-tolerant real-time systems.
We design and implement a realistic simulation of proposed
execution models using LINGUA FRANCA (LF). As future
work, we plan to extend our approach to support and simulate
more complicated software with more tasks and dependencies.

REFERENCES

[1] A. Balachandran, N. Veeranna, and B. C. Schafer, “On time redundancy
of fault tolerant C-based MPSoCs,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 631–636.
[2] C. Krishna and A. Singh, “Reliability of checkpointed real-time systems

using time redundancy,” IEEE Transactions on Reliability, vol. 42, no. 3,
pp. 427–435, 1993.

[3] M. Pandya and M. Malek, “Minimum achievable utilization for fault-
tolerant processing of periodic tasks,” IEEE Transactions on Computers,
vol. 47, no. 10, pp. 1102–1112, 1998.

[4] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Transactions on Computers, vol. 36, no. 11, pp. 1328–
1341, 1987.

[5] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in Proceedings of the Eighth Euromicro

Workshop on Real-Time Systems. IEEE, 1996, pp. 29–33.
[6] E. A. Lee, “Determinism,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 5, pp. 1–34, 2021.
[7] Y.-W. Zhang and H. Zheng, “Slack time management for imprecise

mixed-criticality systems with reliability constraints,” IEEE Transactions

on Computers, 2025.
[8] S.-Y. Huang et al., “RTailor: Parameterizing soft error resilience for

mixed-criticality real-time systems,” in 2023 IEEE Real-Time Systems

Symposium (RTSS). IEEE, 2023, pp. 344–357.
[9] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance

in real-time systems: Identifying the future research questions,” ACM

Computing Surveys, vol. 55, no. 14s, pp. 1–30, 2023.
[10] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant

scheduling schemes for energy-efficient hard real-time systems,” Journal

of Systems and Software, vol. 85, no. 6, pp. 1386–1399, 2012.
[11] T. Ayav, P. Fradet, and A. Girault, “Implementing fault-tolerance in

real-time systems by automatic program transformations,” in ACM/IEEE

International conference on Embedded software, 2006, pp. 205–214.
[12] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Application-based

metrics for strategic placement of detectors,” in 11th Pacific Rim Int’l

Symposium on Dependable Computing. IEEE, 2005, pp. 8–pp.
[13] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-

triggered language for embedded programming,” in Embedded Software:

First International Workshop, EMSOFT 2001 Tahoe City, CA, USA,

October 8–10, 2001 Proceedings 1. Springer, 2001, pp. 166–184.
[14] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-

criticality systems,” Real-Time Systems, vol. 50, pp. 509–547, 2014.
[15] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee, “Toward a Lingua

Franca for deterministic concurrent systems,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 4, pp. 1–27, 2021.
[16] M. Lohstroh, Reactors: A deterministic model of concurrent computation

for reactive systems. University of California, Berkeley, 2020.
[17] M. Lohstroh et al., “Deterministic coordination across multiple time-

lines,” ACM Transactions on Embedded Computing Systems, vol. 23,
no. 5, pp. 1–29, 2024.

[18] J. Garrido et al., “Analysis of WCET in an experimental satellite
software development,” in 12th International Workshop on Worst-Case

Execution Time Analysis, 2012, pp. 81–90.
[19] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-

bustness to timing faults,” in 23rd IEEE Real-Time Systems Symposium,

2002. RTSS 2002. IEEE, 2002, pp. 315–326.
[20] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The

ROSACE case study: From Simulink specification to multi/many-core
execution,” in 2014 IEEE 19th Real-Time and Embedded Technology

and Applications Symposium (RTAS). IEEE, 2014, pp. 309–318.
[21] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence

problem in CPS simulations: the R-ROSACE case study,” in 9th Eu-

ropean Congress Embedded Real Time Software and Systems ERTS
2

2018, 2018, pp. pp–1.
[22] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller – the ROSACE

case study,” https://github.com/lf-lang/playground-lingua-franca/tree/
main/examples/C/src/rosace, Lingua Franca Playground.

[23] J. A. Pellish et al., “Impact of spacecraft shielding on direct ionization
soft error rates for sub-130 nm technologies,” IEEE Transactions on

Nuclear Science, vol. 57, no. 6, pp. 3183–3189, 2010.

(a) Original ROSACE software 
with failure injection.

(b) Modified ROSACE for fault tolerance simulation 
with failure injection and Proposed2.

● In (a), the aircraft oscillates and destabilizes under faults.
● In (b), the aircraft recovers quickly and maintains stable. 



Summary

Authors:
Dongha Kim, and Hokeun Kim
Contact:
dongha@asu.edu, hokeun@asu.edu 

Websites: 
• https://labs.engineering.asu.edu/kim/ 
• https://jakio815.github.io/
• https://hokeun.github.io/

https://github.com
/asu-kim/fault-
tolerant-real-time

15

● Deterministic execution models

○ Ensure determinism in fault-tolerant real time systems.
● Simulation runtime

○ Implemented using Lingua Franca (LF) to support realistic software-
level simulations

● Validated performance

○ Experiments and ROSACE case study show deadline misses are 
avoided and utilization waste reduced.

mailto:dongha@asu.edu
mailto:hokeun@asu.edu
https://labs.engineering.asu.edu/kim/
https://labs.engineering.asu.edu/kim/
https://jakio815.github.io/
https://jakio815.github.io/
https://hokeun.github.io/
https://hokeun.github.io/
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time

