PSU 5™ ASU KIM
University KNOWLEDGEABLE &
INTERACTIVE MACHINES

Deterministic Modeling and Simulation
of Fault-Tolerant Real-Time Software

Dongha Kim and Hokeun Kim
School of Computing and Augmented Intelligence
Arizona State University

Time-Centric Reactive Software (TCRS '25) Workshop
at ESWEEK 2025, Taipei, Taiwan, on October 2, 2025

EMBEDDED
SYSTEMS

WEEK Contact: Websites:
Q d « dongha@asu.edu « https://labs.engineering.asu.edu/kim/
hokeun@asu.edu e https://jakio815.qithub.io/

https://hokeun.github.io/

https://labs.engineering.asu.edu/kim/
https://labs.engineering.asu.edu/kim/
https://jakio815.github.io/
https://jakio815.github.io/
https://hokeun.github.io/
https://hokeun.github.io/
mailto:dongha@asu.edu
mailto:dongha@asu.edu
mailto:hokeun@asu.edu
mailto:hokeun@asu.edu

Introduction

Some real-time systems have hard time requirements.

Even if logic was designed flawless, hardware faults can occur. E.g., Soft errors

Qantas Flight 72 (2008) [1] — A single bit error in one of the air data inertial
reference units (ADIRU) caused the autopilot to dive the aircraft, resulting serious
injuries.

How do we make them fault tolerant?

[1] Bureau, Australian Transport Safety. "In-Flight Upset, 154 km West of Learmonth." Western Australia 7 (2008).

Hardware techniques?

J0E1+1=3 How does the processor know this is wrong?
lllll

30E 1+ 1 =2 -—— Pick the most common outcome
lll'l

JO0E1+1=2
lllll —

* Add processors doing same job

-> Hardware techniques require additional hardware components.
-> Hardware being complex, increasing hardware fault rates [2].

[2] Canal, Ramon, et al. "Predictive reliability and fault management in exascale systems: State of the art and perspectives." ACM Computing
Surveys (CSUR) 53.5 (2020): 1-32. 3

Time redundancy fault tolerance [3]

1. Re-execution
-> Restart the same task when failure is detected

_o

(1
1

No Fault
2. Checkpoint / Restart (Restore)

t

>

€Y
2

(2)
L2

(1)
1>

One Fault

~

-> Create a checkpoint, which saves the state of the task, and restarts from the

checkpoint.
Restore from CKPT;
CKPT,CKPT, CKPT, CKPT,
T11 C 11,2 C T1,3 T11 T1,2 H T1,2 IC 11,3
> >
No Fault t One Fault t
[3] F. Reghenzani, Z. Guo, and W. Fornaciari, “Software fault tolerance in real-time systems: Identifying the future research questions,” ACM 4

Computing Surveys, vol. 55, no. 14s, pp. 1-30, 2023.

Tradeoff Between Timeliness and Reliability

« Enhancing fault tolerance through re-execution or checkpointing can negatively
impact schedulability due to fault detection and recovery.
-> Deadlines can be missed!

* However, testing this is not easy.
Especially when we want deterministic results.

« We want to ensure if deadlines always miss, or not.
-> We want deterministic results!

« However, failures can lead to non-deterministic results...

Motivating Example
« e.g.) Task split into 4 segments (3 checkpoints)

A
segl Segﬁegﬁ seg?2 |segS seg4 l

0 10 8 48I time (ms)
Deadline miss

T segl seg? f seg? T seg? seg3 seg4

0 10 19 28 38 48 time (ms)

« Same number and sequence of failures can lead to different deadline behaviors
depending on failure timing.
-> Unreliable schedulability analysis.
-> No repeatability

« How should we verify that scheduling including fault tolerance
techniques meet their deadlines with determinism?

Tasks Models, Assumptions and Timing Semantics

* i : Task number « CE. .- Segment's worst case
Task Model * j : Instance number Lk == : :
(n) _ execution time (WCET) including
T. . * k : Segment number . :
i,j:[k] . Failure detection and recovery.
* n : Number of executions of segment
» Scheduling is weakly hard real-time and non-preemptive.
* Failures can occur in any segment.
Sygtaeimrgnd » Watchdogs detect all failures.

A . * Detection/recovery add small time overhead.
ssumptions No failures during failure detection and recovery.
» Each task can abort at checkpoints.

* Physical Time: Wall clock time.
* Logical Time: Abstraction of ordering of events.
* Logical Execution Time (LET): Abstraction of actual execution time.

Timing
Semantics

Approach: Advancing Logical Time

« When segment fails, advance the logical time as much as the WCET Ci’f[k] of the
segment.

m+1) _ _(n) F
Si ikl =Si i) T Cifk)

A
4 &) 2) a| :
T§,1):[1] Tl.l:[ﬁ T1,1:[2] l

T T
0 10 14 20 3b 40 50 logical time (msec)

Ensure determinism.

Results only depend on the sequence of failures (number, order), not their
timing.

Motivational example leads to two different results, which is non-deterministic.
-> \We guarantee the system fails or succeeds deterministically.

Limitations: This approach is very conservative.

Approach: Proactive Task Instance Abortion

« Monitor both task deadlines, and the cumulative execution time.
- Abort instances if they can no longer meet deadlines.

[1Segment Success []Segment Failure [] Segment Missing Deadline

] Neéxt Instance dline miss
(1) (1) (2) (3) (1) €))
Ty | Bt ﬁru ﬁTn T11[3]I;T11[4]
>

0 10 40 loglcal time (msec)
A

ey ey ¥ (2) T ey

Y] Yoaz) | Yo1ipz) . v ‘1,2:[1]
0 10 3I0 4IO l:)gical time (msec)

* Avoid utilization waste.
* Prevent deadline misses propagating to next instances.
« Start next instance on time (can be critical when data freshness is important)

Proposed: Enhancement to Execution Model

* Advancing CiF:[k] is conservative, which can lead to many deadline misses.
* |nefficiency -> System always advances logical time including recovery time.
* New approach: Distinguish WCET as Succeed (Cis:[k]) and Failure (Cf[k]).

* Succeed WCET (Cf[k]): Exclude failure detection and recovery time.

(n)
o, = jilk
f’})[k] +ch k] (segment fails)
] Segment Success [C]Segment Failure [_] Segment Missing Deadline
[INextInstance [_|Recovery Time

|t CS[k]’ (segment succeeds)

Ciig Deadline miss
= . > ¢ > ¢ >
(1) (1) 2 (1)
Tiaa | [F11e02] * . T11:02] T11:03] I i
0 11 I 22 I 33 I 42 44 logical time (msec)
S F
CL:[k] Ci:[k]
—
(1 (1) @) (1) (1)
Ty (P12 1 D12 T1,1:[3] 1 Y12:1]

T T T >
0 10 21 31 4142 logical time (msec)

Runtime Design

\
|LT§ H?NAGNUCA,\A: coordination language for deterministic, time-sensitive programs.

OneTask
Coordinator

instantiate task_output

task_info_upda'te>
: task_info_update
TaskScheduler) FESKInpUE _task_input Qb

» Task1_ instance_start_time instance_start_time_update
retry »- } 2)

failed_seg
>

—
failed_seg 3 out
> y __-»_

Task

instantiate - _ _ — i . .
retry:::retry -D f seg r _> 1 >‘/L\'> 2)}fa‘HEd—SEQ }ii:gd
start_seg If_seg trigger L out
i in»TaskBody plask out task_out »OutHandIer P—Pout

11

Evaluation

e Use same task, actual execution time is uniformly sampled (80% to 100%).
e 10,000 runs with failure rate: 0.5%, 1% 5% and 10%.

B Bascline : Re-executes failed segment
[Proposedl : Advances logical time as much as Cfj

[] PI"OPOSedz : Advances logical time depending on success (Cﬁ[k]) and failure (Cf[k])

= 6001 % | 6001 2o
1501
400 - 400 i
100 A 6
=
200 — 200 1 60
501 < N] 1
| (! 10
0,_moo-oo.oo ool ol 0l 1IN0 o o o
Failure Rate 0.5% 1% 5% 10% 0.5% 1% 5% 10% 0.5% 1% 5% 10% 0.5% 1% 5% 10%
(a) Deadline misses. (b) Execution failures. (c) Sum of deadline misses (d) CPU utilization (%).

and execution failures.

e Proposed?2 approach has a smaller number in the overall failures than the
Baseline, which are the sum of deadline misses and execution failures.

12

Case Study : ROSACE Benchmark

e ROSACE: Research Open-source Avionics and Control Engineering [2][3][4]

RosaceFailureWithReexecution

Aircraft v FaultTolerantController
z c s .
vz Va g ® Hold
h ,—b
delta_thc= delta_thc>Engine T T >_ha_r’h_J_) XI Filter y Vz_c
AircraftDynamics bm7—»— | az X y az
delta_e az . -
= —— > delt
delta_ec_ delta_ec delta_e > g9 az J_ Filter Z_ VZCOhtrOlSORGtFYM
———p——» Elevator P—I q_ >
Vz
p2 > “» Filter b~

q X . y
» Filter»—| v2 f

A 4

delta_th
va y SV VaControl50Retry pocta=the ,, delta_the

> F|Iter>—Va—c>
[—V

A

S
»-
»

[2] C. Pagetti, D. Saussi‘e, R. Gratia, E. Noulard, and P. Siron, “The ROSACE case study: From Simulink specification to multi/many-core execution,” in
2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2014, pp. 309-318.

[3] H. Deschamps, G. Cappello, J. Cardoso, and P. Siron, “Coincidence problem in CPS simulations: the R-ROSACE case study,” in 9th European
Congress Embedded Real Time Software and Systems ERTS2 2018, 2018, pp. pp-1.

[4] E. A. Lee, D. Saussie, and C. Pagetti, “Aircraft controller — the ROSACE case study,” https://github.com/If-lang/playground-lingua- 13
francal/tree/main/examples/C/src/rosace, Lingua Franca Playground.

https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples/C/src/rosace

Case Study : ROSACE Benchmark

o Inject failures at 40% rate into the true airspeed (V,) and vertical speed (V,)

controller.

11000 1 —

7

10500

Altitude (m)

-230.05

-230.00

Airspeed (m/s)

250 500

Time (s)

(a) Original ROSACE software
with failure injection.

In (a), the aircraft oscillates and destabilizes under faults.
e In(b), the aircraft recovers quickly and maintains stable.

11000 1

10500

/

Altitude (m)

250

@

-230.050

g

—

-230.025 8

2.

-230.000 »va

s £
560 Time (s) <:

(b) Modified ROSACE for fault tolerance simulation
with failure injection and Proposed2.

14

\
Summary = IlEIQNAGNUCAA .:g‘:‘i%‘é%‘g‘i!‘:g

e Deterministic execution models

o Ensure determinism in fault-tolerant real time systems.
e Simulation runtime

o Implemented using Lingua Franca (LF) to support realistic software-
level simulations

. https://github.com
e Validated performance /asu-kim/fault-

tolerant-real-time

o Experiments and ROSACE case study show deadline misses are
avoided and utilization waste reduced.

Authors: Websites:
SYSTEMS Dongha Kim, and Hokeun Kim » https://labs.engineering.asu.edu/kim/
WEEK @8 Contact: » https://jakio815.qgithub.io/

dongha@asu.edu, hokeun@asu.edu * https://hokeun.qithub.io/ 15

mailto:dongha@asu.edu
mailto:hokeun@asu.edu
https://labs.engineering.asu.edu/kim/
https://labs.engineering.asu.edu/kim/
https://jakio815.github.io/
https://jakio815.github.io/
https://hokeun.github.io/
https://hokeun.github.io/
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time
https://github.com/asu-kim/fault-tolerant-real-time

