
A Case Study of API Design for 
Interoperability and Security of 

the Internet of Things
Dongha Kim, Chanhee Lee, and Hokeun Kim

EAI SmartSP 2024 - 2nd EAI International 
Conference on Security and Privacy in 

Cyber-Physical Systems and Smart Vehicles
New Orleans, USA

Nov 8, 2024
1



1. Introduction
● Internet of Things (IoT) has been rising with the benefits of 

edge computing, such as low latency, privacy protection, 
and scalability [1, 2].

● Heterogeneity of devices -> Challenging to support 
diversity of communication models. (e.g. Smart City)

● Interoperability
○ Various communication protocols 

(e.g. Traffic management)
○ Different security requirements

Communication Protocols Security Requirements

Collecting Sensor Data Publish-Subscribe Low - Prioritize low power 
consumption

Controllilng Traffic Lights Point-to-Point High - Safety-critical

https://thenewstack.io/what-does-it-mea
n-to-be-on-the-internet-of-things/
https://www.challenge.org/knowledgeite
ms/the-smart-city-concept-through-digita
l-twins/
[1] Ning, H., Li, Y., Shi, F., Yang, L.T.: 
Heterogeneous edge computing open 
platforms and tools for Internet of things. 
Future Generation Computer Systems 
106, 67–76 (2020)
[2] Yu, W., Liang, F., He, X., Hatcher, W.G., 
Lu, C., Lin, J., Yang, X.: A survey on the 
edge computing for the Internet of 
Things. IEEE access 6, 6900–6919 
(2017) 2

https://thenewstack.io/what-does-it-mean-to-be-on-the-internet-of-things/
https://thenewstack.io/what-does-it-mean-to-be-on-the-internet-of-things/
https://www.challenge.org/knowledgeitems/the-smart-city-concept-through-digital-twins/
https://www.challenge.org/knowledgeitems/the-smart-city-concept-through-digital-twins/
https://www.challenge.org/knowledgeitems/the-smart-city-concept-through-digital-twins/


2. Research Goals
1. Provide a common interface that supports multiple communication models, for 

seamless interaction between heterogeneous subsystems.

2. Incorporate a flexible security framework that can be adaptively applied based on 
various security requirements.

3. Implement a working runtime system using open-source platforms, and evaluate 
its performance showing reasonably small overhead while simplifying software 
development and enhancing maintainability.

3



Smart City Traffic Monitoring System

4

1. Sensors:
e.g. Vehicle detection cameras, speed 
sensors, pedestrian push buttons…

2. Traffic Lights:
Should indicate the signal for vehicles 
and pedestrians to cross.

3. Traffic Controllers:
Make decisions based on sensors, and 
send signals.

https://www.york.ca/newsroom/campaigns-projects/traffic-technol
ogy-intersections



How Client-Server and Publish-Subscribe Differ?

5

Aspect Client-Server Publish-Subscribe

Protocols TCP MQTT

Communication Point-to-Point Indirect via a broker 
(typically…) 

Scalability Limited by server capacity 
and direct connections.

Scales efficiently with 
multiple subscribers.

Coupling Tightly coupled; clients need 
server details.

Loosely coupled; 
subscribers only need topic 
details.

Latency Low, due to direct 
communication.

Slightly higher due to broker 
mediation.

Use Cases Heavy, reliable data transfer 
(e.g., Traffic light 
controllers).

Lightweight (e.g., Sensor 
data).



3. Proposed Approach Overview
● Connector: Requests connection.
● Listener: Accepts connection request.

Listener Connector

create_listener() create_connector()

wait_for_connection() connect()

read() write()

close()

1. Communication session establishment phase

2. Communication phase

3. Communication session termination phase

6



3. Proposed Approach Overview
● Connector: Requests connection.
● Listener: Accepts connection request.

Listener Connector

create_listener() create_connector()

wait_for_connection() connect()

read() write()

close()

0.05

1. Communication session establishment phase

2. Communication phase

3. Communication session termination phase

7



3. Proposed Approach Overview
● Connector: Requests connection.
● Listener: Accepts connection request.

Listener Connector

create_listener() create_connector()

wait_for_connection() connect()

read() write()

close()

0.05

1. Communication session establishment phase

2. Communication phase

3. Communication session termination phase

8



3. Proposed Approach Overview
● Connector: Requests connection.
● Listener: Accepts connection request.

Listener Connector

create_listener() create_connector()

wait_for_connection() connect()

read() write()

close()

0.05

1. Communication session establishment phase

2. Communication phase

3. Communication session termination phase

9



3. Proposed Approach Overview
● Connector: Requests connection.
● Listener: Accepts connection request.

Listener Connector

create_listener() create_connector()

wait_for_connection() connect()

read() write()

close()

0.05

1. Communication session establishment phase

2. Communication phase

3. Communication session termination phase

10



4. Point-to-Point Communication
Listener Connector

create_listener()

socket()

bind()

listen()

wait_for_connection()
accept()

Wait for 
connect

create_connector()socket()

connect()connect()
Establish connection

 read() recv() write() send()

 close() close()
11



5. Federation

Listener1

Connector1 Connector2 Connector3

Listener2

Connector4

 Federation - federationID

All nodes have their own ID

Third Party
Message Broker 

(e.g. MQTT 
message Broker)

12



Create pub/sub object

Connect to broker

Create pub/sub object

create_ listener()

create_connector()Connect to broker

Publish to “federationID_ listenerID”

Subscribe to 
“federationID_listenerID”

Subscribe to 
“federationID_connectorID_to_listenerID”

Subscribe to 
“federationID_listenerID_to_connectorID”

Publish to 
“federationID_listenerID_to_ConnectorID”

Verify connectorID

Receive ACK
ACCEPT-ACK

ACCEPT, connectorID

LISTEN

JOIN-SENT

JOIN-RECEIVED

ESTABLISHED
ESTABLISHED

CLOSED CLOSED

Publish to 
“federationID_connectorID_to_ listenerID”

Receive connectorID

wait_for_connection()

connect()

JOIN, 

connectorID

5. Publish-Subscribe Communication
Listener Connector

13



5. Publish-Subscribe Communication

 read() Pub/Sub_receive() write() Pub/Sub_publish()

 close()

Send disconnect signal

Disconnect to broker

Destroy object
14



Respond to 
handshake

6. Security Support Key Distribution 
Center (KDC)
(e.g. Kerberos)

Listener Connector

Listener
Initialize 

configurations

Request session 
key from KDC

Request 
handshake

Connector

create_listener() create_connector()

wait_for_connection()
connect()

Established secure
connection

Initialize 
configurations

Get session 
key

15



6. Security Support

Check integrity of 
message

Decrypt 
message with key

*read()

Receive encrypted
message

write()

Encrypt
message with key

Ensure integrity of 
message

Send encrypted 
message

close()

Disconnect 
connection

Destroy session 
key

16



7. A Case Study: Design and Implementation
● Lingua Franca:

Coordination language designed to guarantee 
deterministic concurrency using reactors.
The C runtime supports federated execution for 
distributed systems communicating over network.
Compatible with embedded platforms including
Arduino, Zephyr, and also bare metal devices.

● Secure Swarm Toolkit (SST):
Provides authentication/authorization for its locally 
registered entities using local entity Auth.
The C API supports resource-constrained devices [1].

https://github.com/lf-lang

https://github.com/iotauth/iotauth

17[1] Kim, Dongha, et al. "SST v1. 0.0 with C API: Pluggable security solution for the Internet of Things." SoftwareX 22 (2023): 101390.

https://github.com/lf-lang
https://github.com/iotauth/iotauth


8. Example Program for Experiments

18



Source Destination
Runtime 

Infrastructure
(RTI)

Source DestinationRTI

Message
Broker

Source DestinationRTI

Key Distribution 
Center
(KDC)

1. TCP

2. MQTT

3. TCP + Security

8. Experimental Scenarios

19



Source DestinationRTI

Source DestinationRTI

Broker

Source DestinationRTI

KDS

1. TCP

2. MQTT

3. TCP + Security

Wi-Fi end-to-end round-trip latency : 
13.60 milliseconds. Raspberry Pi 4B 

(4GB RAM)

i9-13900 CPU, 
128GB RAM

8. Experimental Setup

20



9. Average Lag

LAG: 
Time lapse between system clock 
(physical clock) and agreed global 
time (logical clock)

Logical time Physical time

Source DestinationRTI Source DestinationRTI

Broker2. MQTT

21



10. Message Length Sent In Bytes
● Does not add additional 

bytes excluding bytes added 
from the protocol itself.

● AES-CBC mode protects 
side channel attacks such as 
inferring message by the 
message length.

22



11. Binary Size Overhead
● RTI: 1%-5% Overhead
● Nodes: 3%-7% Overhead
● Overhead mostly comes 

from the compilation of the 
network abstract layer as a 
separate library.

23



Thank You For Your Attention!

Contact Information: https://jakio815.github.io/, 
dongha@asu.edu, https://labs.engineering.asu.edu/kim/ 

Summary
● Proposes an API and runtime for interoperability and security in IoT and 

distributed CPS.
● Implements seven core API functions using open-source frameworks 

(Lingua Franca and SST) as a case study.
● Evaluates communication time overhead, message size, and binary size, 

showing minimal overhead.
● Plans future support for additional communication modes, federation of 

diverse nodes, and fine-grained security configurations.

Acknowledgement
Supported by NSF I/UCRC (IDEAS), NSF grant #2231620, and ATTO Research.

24

https://jakio815.github.io/
mailto:dongha@asu.edu
https://labs.engineering.asu.edu/kim/

