f A Case Study of API Design for
Interoperability and Security of
the Internet of Things

ha Kim, Chanhee Lee, and Hokeun Kim

EAI SmartSP 2024 - 2nd EAI International

" Ari Stat Conference on Security and Privacy in
% rizona state Cyber-Physical Systems and Smart Vehicles

University New Orleans, USA
Nov 8, 2024



1. Introduction

e Internet of Things (loT) has been rising with the benefits of
edge computing, such as low latency, privacy protection,
and scalability [1, 2].

e Heterogeneity of devices -> Challenging to support
diversity of communication models. (e.g. Smart City)

e Interoperability

o Various communication protocols
(e.g. Traffic management)

o Different security requirements

Communication Protocols Security Requirements

Collecting Sensor Data Publish-Subscribe Low - Prioritize low power
consumption
Controllilng Traffic Lights | Point-to-Point High - Safety-critical

https://thenewstack.io/what-does-it-mea

n-to-be-on-the-internet-of-things/
https://www.challenge.org/knowledgeite
ms/the-smart-city-concept-through-digita
l-twins/

[1] Ning, H., Li, Y., Shi, F,, Yang, L.T.:

Heterogeneous edge computing open
platforms and tools for Internet of things.
Future Generation Computer Systems
106, 67-76 (2020)

[2] Yu, W., Liang, F., He, X., Hatcher, W.G.,
Ly, C.,, Lin, J., Yang, X.: A survey on the
edge computing for the Internet of
Things. IEEE access 6, 6900-6919
(2017) 2


https://thenewstack.io/what-does-it-mean-to-be-on-the-internet-of-things/
https://thenewstack.io/what-does-it-mean-to-be-on-the-internet-of-things/
https://www.challenge.org/knowledgeitems/the-smart-city-concept-through-digital-twins/
https://www.challenge.org/knowledgeitems/the-smart-city-concept-through-digital-twins/
https://www.challenge.org/knowledgeitems/the-smart-city-concept-through-digital-twins/

2. Research Goals

1.

Provide a common interface that supports multiple communication models, for
seamless interaction between heterogeneous subsystems.

Incorporate a flexible security framework that can be adaptively applied based on
various security requirements.

Implement a working runtime system using open-source platforms, and evaluate
its performance showing reasonably small overhead while simplifying software
development and enhancing maintainability.



Smart City Traffic Monitoring System

https://www.york.ca/newsroom/campaigns-projects/traffic-technol
ogy-intersections

1.

Sensors:
e.g. Vehicle detection cameras, speed
sensors, pedestrian push buttons...

Traffic Lights:
Should indicate the signal for vehicles
and pedestrians to cross.

Traffic Controllers:
Make decisions based on sensors, and
send signals.



How Client-Server and Publish-Subscribe Differ?

Aspect
Protocols

Communication

Scalability

Coupling

Latency

Use Cases

Client-Server

TCP

Point-to-Point

Limited by server capacity
and direct connections.

Tightly coupled; clients need
server details.

Low, due to direct
communication.

Heavy, reliable data transfer
(e.q., Traffic light
controllers).

Publish-Subscribe
MQTT

Indirect via a broker
(typically...)

Scales efficiently with
multiple subscribers.

Loosely coupled;
subscribers only need topic
details.

Slightly higher due to broker
mediation.

Lightweight (e.g., Sensor
data).



3. Proposed Approach Overview

e Connector: Requests connection.
e Listener: Accepts connection request.

1. Communication session establishment phase

Listener Connector
create_listener() create_connector()
v v

wait_for_connection() [*— connect()

3. Communication session termination phase

close()




3. Proposed Approach Overview

e Connector: Requests connection.
e Listener: Accepts connection request.

1. Communication session establishment phase

Listener Connector
create_listener() create_connector()
v v

wait_for_connection() +<— connect()

3. Communication session termination phase

close()




3. Proposed Approach Overview

e Connector: Requests connection.
e Listener: Accepts connection request.

1. Communication session establishment phase

Listener Connector
create_listener() create_connector()
v v

wait_for_connection() [*— connect()

3. Communication session termination phase

close()




3. Proposed Approach Overview

e Connector: Requests connection.
e Listener: Accepts connection request.

1. Communication session establishment phase

Listener Connector
create_listener() create_connector()
v v

wait_for_connection() [*— connect()

3. Communication session termination phase

close()




3. Proposed Approach Overview

e Connector: Requests connection.
e Listener: Accepts connection request.

1. Communication session establishment phase

Listener Connector
create_listener() create_connector()
v v

wait_for_connection() [*— connect()

3. Communication session termination phase

close()




4. Point-to-Point Communication

Listener Connector
4 k )

soc*et() [ socket() [ create_connector()

create_listener() | bind()
v

L Ilst?n() )

accept() v
wait_for_connection() Wai*t for (connect() connect()
| connect EStablish connection

11



5. Federation

Federation - federationID

[ Listener1 H Listener2 }

-

Connector1 } [ Connector2 } [ Connector3 } [ Connector4

N-

~

v

LY i — —

\

All nodes have their own ID

.

Third Party
Message Broker
(e.g. MQTT
message Broker)

J

12



5. Publish-Subscribe Communication

Listener

Create pub/sub object

__________ y__
| Connect to broker |

CLOSED

Subscribe to
“federationID _listenerID”

create_ listener()

Receive connectorlD
Y
Subscribe to
“federationID _connectorID_to_listenerlD”

\N,

LISTEN /Joﬁﬂf

Connector

Create pub/sub object

CLOSED |

create_connector()

Publish to “federationID _ listenerlD”

v

Subscribe to

“federationID listenerID to_connectorID”

JOIN-SENT l

connect()
" ACCEPT, :
Publish to m Verify connectorlD
“federation|D _listenerlD _to_ConnectorlD” | 2
' i JOIN-RECEIVED Publish to

CEIL el R e l ACCEPTLG-(— “federationID _connectorlD _to_ listenerlD”

Receive ACK <« ESTABLISHED

ESTABLISHED

13




5. Publish-Subscribe Communication

read() |Pub/Sub_receive()| [Pub/Sub_publish()]  write()

Send disconnect signal

____________ b

close() :r Disconnect to broker i

Destroy object

14



6. Security Support | "tuice”

(e.g. Kerberos)

/\\
Connector ]

Listener Connector
te list Initialize Initialize ¢ ¢
create_listener() configurations configurations create_connector()
4 i N\

Request session
key from KDC

L

Respond to v connect()
wait_for_connection()| __handshake Request

Get session * handshake

key
Established secure
-« : >
connection )

15



6. Security Support

Receive encrypted Encrypt
message message with key
v v
. Check integrity of Ensure integrity of _
read) message message write()
v v
Decrypt Send encrypted
message with key message
Disconnect
connection
close() ]

Destroy session
key




7. A Case Study: Design and Implementation

e Lingua Franca: https://github.com/If-lang \

Coordination language designed to guarantee I LI N G UA
deterministic concurrency using reactors. F RA N CA

The C runtime supports federated execution for
distributed systems communicating over network. HelloDistributed

Compatible with embedded platforms including SoLlice g Destination
Arduino, Zephyr, and also bare metal devices. @ """ D’_’D
(0, 500 msec)

e Secure Swarm Toolkit (SST): https:/github.com/iotauth/iotauth
Provides authentication/authorization for its locally ~  “$aGum 4
registered entities using local entity Auth. g < > ,
The C API supports resource-constrained devices [1].

[1] Kim, Dongha, et al. "SST v1. 0.0 with C API: Pluggable security solution for the Internet of Things." SoftwareX 22 (2023): 101390. 17


https://github.com/lf-lang
https://github.com/iotauth/iotauth

8. Example Program for Experiments

HelloDistributed

Source Destination

(O T2 00

(0, 500 msec)

target C {
coordination: centralized,
comm—-type: MQTT,
timeout: 500 sec,
auth: true

reactor Source {
output out: int
timer t (0, 500 msec)
reaction(t) -> out {=
1£ set.(fout, 0):
=1
}

reactor Destination {
input in: int
reaction(in) {=
1f_print ("Dest received: %s", in->value);
=}
}

federated reactor HelloDistributed{
s = new Source ()
d = new Destination|()
s.out —> d.in

18




8. Experimental Scenarios

Runtime
1. TCP Infrastructure Destination}
(RTI)

[Destination}

Key Distributiorﬂ
Center
3.TCP +Security < | (po) | &

VW

G RTI a DestinationJ 19




8. Experimental Setup Wi-Fi end-to-end round-trip latency :

N 13.60 milliseconds. N Raspberry Pi 4B
i9-13900 CPU,
2. MarT 128GB RAM

[Destination o

KDS §
3. TCP + Security }3 ﬁ
22

RTI Destination !

¥ Source
20




9. Average Lag | 2.MQTT IO
|
RTI Destination ] : RTI [ Destination }

LAG: 188 A Timer Triggered Period 188_

Time !apse between system clock T ‘280"‘;220 §
om0 | §
/ %’14_ 14.4914§’> 14.4 15& 14.5515.00 X

D 1 g § / % //\ \
Logical time Physical time . \\§ | /§ | /\\ | § |




10. Message Length Sent In Bytes

e Does not add additional

200__ |Mess|jgevl‘emgéh In Eytes bytes excluding bytes added
~ 180 - X% from the protocol itself.
5 IR 16 8% 04 P
= 160 - |
2z 1401 e AES-CBC mode protects
= 120 . side channel attacks such as
> . .
9 100 A K S inferring message by the
S g0 N ‘<§ message length.
U) i i i
o 60
Q i
> 40 1
an)] |

20 1
0

Baseline TCP SST 29



11. Binary Size Overhead

1L IBaseline [ ] TCP[ ] SST MQTT
A 138k
140k 13Kk 133k 128k137k 133K
123k

120k 116k
o 110k 111k 112K
2 )
© 100k
N
()
> 80kA
©
=
m
© 60k
0
S
3 40k
()
h

20k~

0 ;
RTI Source Destination

RTI: 1%-5% Overhead
Nodes: 3%-7% Overhead
Overhead mostly comes
from the compilation of the
network abstract layer as a
separate library.

23



Thank You For Your Attention!

e Proposes an APl and runtime for interoperability and security in loT and
distributed CPS.

e Implements seven core API functions using open-source frameworks
(Lingua Franca and SST) as a case study.

e Evaluates communication time overhead, message size, and binary size,
showing minimal overhead.

e Plans future support for additional communication modes, federation of
diverse nodes, and fine-grained security configurations.

Acknowledgement

Supported by NSF I/UCRC (IDEAS), NSF grant #2231620, and ATTO Research.

(oL ]yl T P11 {e]g 1 VT4 M hitps://jakio815.github.io/, %‘ Arizona State

dongha@asu.edu, https://labs.engineering.asu.edu/kim/ University »



https://jakio815.github.io/
mailto:dongha@asu.edu
https://labs.engineering.asu.edu/kim/

