PADS 2025

Improving the Efficiency of **Coordinating Timed Events** in Distributed Systems

Arizona State Byeonggil Jun¹, Edward A. Lee²,

Marten Lohstroh², and Hokeun Kim¹

UC Berkeley

1: Arizona State University

2: University of California, Berkeley

Introduction

- Distributed cyber-physical systems (CPS) requires
 - deterministic behavior
 - fine-grained timing control over network

Introduction

- Challenge: supporting accurate and precise timing control while ensuring deterministic behavior
 - E.g., HLA (high level architecture)'s time management mechanism ensures determinism but hinders accurate timing control

Contributions

- Identify challenges in deploying HLA-based time management techniques in distributed CPS
 - Infeasible fine-grained timing control
 - Huge network overhead
- Enable accurate timing control and improve network communication efficiency in such distributed CPS

Background - Lingua Franca Federate At time SporadicSender $(t, m) \neq (0, 0)$ s_s : Sender s_r : Receiver **Timer** MSG(0) out in (0, 20 ms)Reaction

Background - Time Management Mechanism

at 100 ms

Acronym	Definition	Acronym	Definition
NET	Next Event Tag	TAG	Tag Advance Grant
LTC	Latest Tag Complete	MSG	Tagged Message

Our Previous Work^[1]

- Downstream Next Event Tag (DNET)^[1]
 - Remove some unnecessary NET signals

Research Goal 1 - Accurate Timing Control

- Inefficient signal exchanging delay the execution of events
- How can a federate proceeds its next events without inefficient signal exchanging?

Approach 1: More Efficient TAG

- The RTI send TAG with the latest tag that Receiver can advance
- Receiver mostly can advance its time without requesting a new TAG

Research Goal 2 - Efficient Communication

 How can a federate avoid sending LTC signals every time it finishes a tag?

Unnecessary!!

Approach 2: Removing Unnecessary LTC

- Two purposes of LTC signals
 - Compute TAG signals
 - Track a federate's states
- Computing TAG signals can be done only with NET signals (will be proven)

Approach 2: Removing Unnecessary LTC

- TAG can be computed without LTC signals
- Possible time to grant
 - With LTC(100 ms): any time <= 100 ms
 - With NET(120 ms): any time < 120 ms

Approach 2: Removing Unnecessary LTC

Send LTC if a tagged message has been processed at current time

Case Study

Evaluation

- We evaluated our approach using three micro-benchmarks^[1]
- We measured
 - the lag, the time difference between the physical time and the logical time of sensing event
 - the number of signals during 500 seconds
- Round-trip delay between the RTI and federates
 - 10 ms ± 1 ms of jitter

Evaluation

- We compare our solution with two approaches, Baseline and MEMOCODE'24[1]
- Baseline
 - Similar to HLA, a federate sends NET and LTC signals every time it wants to advance its tag
- MEMOCODE'24
 - Baseline with DNET signals eliminating some unnecessary NET signals
- Our solution
 - Based on MEMOCODE'24 with more efficient TAG and LTC

Evaluation

DistanceSensing

d_u: UltraSonicSensor

out in

out in

(0, 60 sec)

Reduction

- Only our solution allows frequent sensing (with period <= 10 ms)
- The systems with other approaches cannot provide fine-grained timing control (sensing with period <= 10 ms)

	Baseline	MEMOCODE'24	Our Solution
5 ms	247,499	246,810	3,364
10 ms	149,258	150,044	3,345
20 ms	76,847	77,844	3,345

Total number of network signals, e.g., TAG and NET, during the 500 sec of runtime with various timer periods

Conclusion

- Allow applying HLA-based time management mechanism to deployment of distributed CPS by
 - Enabling fine-grained timing control
 - Improving efficiency of synchronization process

- Contact Information
 - Personal Website: https://byeonggiljun.github.io/
 - Email: <u>byeonggil@asu.edu</u>

Thank you!

 Evaluation artifact of this work: https://github.com/asu- kim/efficient-DDE-experiments

