
Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

HYU IoT and ASU KIM LabHYU IoT and ASU KIM Lab

HYU IoT Lab: https://hyu-iot.github.io/
ASU Kim Lab: https://labs.engineering.asu.edu/kim/

Secure and Lightweight Access Control
for Highly Decentralized and Distributed

File Systems 

Yeongbin Jo1, Yunsang Cho1, and Hokeun Kim1,2

1Hanyang University and 2Arizona State University
HYU IoT Lab and ASU KIM lab

https://hyu-iot.github.io/


Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Overview – IoT & Cloud

2

- Internet of Things (IoT) - Cloud

• Proposed approach – Securing decentralized, distributed 
file system using SST

- Decentralized distributed file system: File system without central server
- SST: Secure Swarm Toolkit which provides secure key for access control



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Motivation

3

Challenges in IoT & Cloud

• Dependence on Internet connection
• Costs for using cloud services
Alternative: Decentralized distributed file system



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Motivation

4

Decentralized, distributed file system

• Dependence on Internet 
connection

-> Can work even when Internet 
connection is unstable

• Costs for using cloud services
-> Much lower cost (IPFS)



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Motivation

5

Challenges in free decentralized, distributed file 
system (e.g., IPFS, BitTorrent)

1. Anyone can download the file if 
downloader knows information of the file

2. Provider may be difficult to provide the 
file to specific person or group

-> We propose secure and lightweight 
mechanism for access control to 
decentralized, distributed file system



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Background

6

Decentralized, distributed file system

• Decentralization – there is no central 
server. File can be downloaded from 
nodes which have the file.

• Distribution - Files are divided into 
smaller pieces or blocks. 



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

SST is appropriate to distributed system!!

Background

7

Secure Swarm Toolkit (SST)

(Figure from Kim et al. IoTDI17. ‘A toolkit for construction of authorization service
infrastructure for the internet of things’)



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Auth: responsible for authenticating and 
authorizing registered entities

Entity: any device connected to the network 
in the IoT to be authenticated and authorized

Session key: a symmetric key used to 
protect a single session of communication

Background

8

Secure Swarm Toolkit (SST)

Auth

Entity 
client

Entity
server

Session key Session key

Secure
communication



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Background

9

Secure Swarm Toolkit (SST)
Auth

Secure
communication

Auth

Entity 
client

Entity
server

Session key Session key

Secure
communication



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Background

10

Secure Swarm Toolkit (SST)
1. Heterogeneity
-> Support various security 
configurations

2. Open environment
-> Revoke credentials of 
compromised entities

3. Scalability
-> Use multiple Auths

Auth

Entity 
client

Entity
server

Session key Session key

Secure
communication



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Approach

11

Decentralized, distributed file system with SST

Auth

Uploader

node1

node2

node3

node4

Session key
Session key

Shared 
Resources

: Access grant
: Encrypt and upload
: Download and decrypt



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Approach

12

Decentralized, distributed file system with SST

• We use Inter-planetary File System 
(IPFS) which is a decentralized, 
distributed file system.

• We use SST which provides secure key to 
encrypt and decrypt file.

• We design and develop file system 
manager software for meta information 
(e.g., key id, file hash)

Auth

File System
Manager



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Approach - IPFS with SST 

13

Operation

Auth

File System
Manager

6. Download and
decrypt file

4. Receive data

5. Get secure key1. Get secure key

2. Encrypt and 
upload file

3. Transfer data

DownloaderUploader



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Approach - IPFS with SST

14

File upload operation

Auth

Uploader

File System
Manager

3. Encrypt file 
with secure key

1. Request secure key

2. Give secure key

4. Upload file

5. Give hash
value

6. Transfer hash value
and key id



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Approach - IPFS with SST 

15

File download operation

Auth

File System
Manager

6. Decrypt file
with secure key

3. Download file

1. Request 
information

2. Give hash value
and key id

4. Request secure key

5. Transfer secure key

Downloader



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Evaluation

16

Experimental Setup

Auth

File System
Manager

• Entity - RaspberryPi4

• Auth, File System Manager



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Evaluation – scenario1

17

Upload file Download file

Compare up/download total execution time with 
and without SST

- The experiment is conducted at 
256 KB, 1 MB, 4 MB, and 16 MB.

- Estimate execution time at each 
step



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Evaluation – scenario1

18

Result for uploading files
Without SST

With SST

- Uploading time is dominant as 
the file grows in size.

- Time for encryption and file I/O 
is high due to operating several 
processes.

- Execution overhead of SST is 
42% at 16 MB.



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Evaluation - Scenario 1

19

Result for uploading files
Without SST

With SST

Almost constant

Almost constant Relatively constant



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Evaluation - Scenario 1

20

Result for downloading files
Without SST

With SST

- Downloading time is dominant 
as the file grows in size.

- Time for encryption and file I/O 
is high due to operating several 
processes.

- Execution overhead of SST is 
19% at 16 MB.



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Evaluation - Scenario 1

21

Result for downloading files
Without SST

With SST

Almost constant

Almost constant Relatively constant



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Evaluation – Scenario 2

22

Upload file
Download file

Compare multi-download total execution time with SST

- The experiment is conducted 
at 16 MB.

- Estimate total execution time 
according to download order.



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Evaluation – Scenario 2

23

Result for multi-downloaders

Without SST

With SST

- Download takes less time 
when there are more sharers

- Other time is not affected. 



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Related Work

24

• Storj
- Provides access control using Macaroons(bearer token + 

caveat + HMAC)

• Smart contract 
- Provides access control using smart contract to 

verify permissions of the nodes



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

Conclusion

25

• Future work
- Design more robust mechanism for managing the 
resources of the distributed files.
- Carry out more in-depth evaluation of the security 
and efficiency of our approach at greater scale.

• Security solution with minimal cost tailored to 
decentralized, distributed file systems

- Low additional execution time
- Low additional network usage



Hanyang University & Arizona State UniversityHYU IoT & ASU KIM Lab

HYU IoT and ASU KIM LabHYU IoT and ASU KIM Lab

HYU IoT Lab: https://hyu-iot.github.io/
ASU Kim Lab: https://labs.engineering.asu.edu/kim/

Thank you

https://hyu-iot.github.io/

