
Copyright © 2024 Arizona Board of Regents

Efficient Coordination for
Distributed Discrete-Event
Systems

Byeonggil Jun1, Edward A. Lee2,
Marten Lohstroh2, and Hokeun Kim1

1: Arizona State University
2: University of California, Berkeley

MEMOCODE 2024

Copyright © 2024 Arizona Board of Regents

Introduction
● Determinism often matters in distributed cyber-physical systems
● HLA (high-level architecture) is one way to ensure determinism in

distributed systems
○ But, HLA incurs a huge network overhead

https://slcontrols.com/solutions/smart-factory/ https://www.iiot-world.com/artificial-intelligence-ml/autonomous-vehicles/challeng
es-in-training-algorithms-for-autonomous-cars/

https://slcontrols.com/solutions/smart-factory/
https://www.iiot-world.com/artificial-intelligence-ml/autonomous-vehicles/challenges-in-training-algorithms-for-autonomous-cars/
https://www.iiot-world.com/artificial-intelligence-ml/autonomous-vehicles/challenges-in-training-algorithms-for-autonomous-cars/

Copyright © 2024 Arizona Board of Regents

Related Work
● High Level Architecture, IEEE Standards 2010[1]

○ Runtime Infrastructure and Federates
● Rudie et.al., “Minimal communication in a distributed discrete-event

system,” IEEE TACON 2003[2]

● Wang et.al., “Optimistic Synchronization in HLA-Based Distributed
Simulation,” ACM PADS 2004[3]

● COSSIM, ACM TACO 2020[4]

[1] IEEE, “IEEE standard for modeling and simulation (M&S) high level architecture (HLA)– framework and rules,” IEEE Std
1516-2010 (Revi- sion of IEEE Std 1516-2000) - Redline, pp. 1–38, 2010.
[2] K. Rudie, S. Lafortune, and F. Lin, ‘Minimal communication in a distributed discrete-event system’, IEEE Transactions on
Automatic Control, vol. 48, no. 6, pp. 957–975, 2003.
[3] Wang X, Turner SJ, Low MYH, Gan BP. Optimistic Synchronization in HLA-Based Distributed Simulation. SIMULATION.
2005;81(4):279-291. doi:10.1177/0037549705054931
[4] Nikolaos Tampouratzis et.al. 2020. A Novel, Highly Integrated Simulator for Parallel and Distributed Systems. ACM
Trans. Archit. Code Optim. 17, 1, Article 2 (March 2020), 28 pages. https://doi-org.ezproxy1.lib.asu.edu/10.1145/3378934

Copyright © 2024 Arizona Board of Regents

Background
A Lingua Franca program

Timer

Output
Port

Input
PortReaction

MSG(0, 0)

At tag
(0, 0)

Reactor

Copyright © 2024 Arizona Board of Regents

● Tagged Message (MSG)
○ A message with a tag

● Latest Tag Complete (LTC)
○ To notify that a federate has finished a tag

● Next Event Tag (NET)
○ To report the tag of the earliest unprocessed event

● Tag Advance Grant (TAG)
○ To grant a federate to advance its tag to G(TAG), the payload tag

Background
Centralized Coordination

Copyright © 2024 Arizona Board of Regents

Motivating Example
Sparse Sender

Send a message
at (100 ms, 0)

Copyright © 2024 Arizona Board of Regents

Motivating Example
● Purposes of NET signals

○ Acquire TAG signals
○ Let the RTI grant TAG signals to other

federates

Unnecessary!!

Copyright © 2024 Arizona Board of Regents

Research goal
● How can a federate avoid sending

unnecessary NETs?

Unnecessary!!

Copyright © 2024 Arizona Board of Regents

Approach
● Our Approach to eliminate unnecessary NET signals

○ Downstream Next Event Tag (DNET)
○ For each federate, the RTI computes the latest unnecessary NET
○ A federate does not need to send any NETs with a tag _g_ less

than or equal to G(DNET), payload of DNET

Copyright © 2024 Arizona Board of Regents

Approach

Unnecessary!!

Copyright © 2024 Arizona Board of Regents

Challenges
● Logical Delay

○ To indicate logical time elapsing through a connection

MSG(20 ns, 0)
At (0, 0)

Copyright © 2024 Arizona Board of Regents

Challenges MSG(g)

At (t, m)

d

g =
(No Delay)

Copyright © 2024 Arizona Board of Regents

● Minimum tag increment over all connections
○ Ex) DCA = (20 ns, 1) and DBC = (0, 1)

Challenges

At (0, 0)

MSG(20 ns, 0)

At (20 ns, 0)

MSG(20 ns, 1)
(20 ns, 1)

Copyright © 2024 Arizona Board of Regents

● Earliest Incoming Message Tag (EIMT)
○ A’s event at (0, 0) may cause a message to C with tag (20 ns, 1)
○ C will not receive any message with a tag < (20 ns, 1)

Challenges
(20 ns, 1)

EIMTC = (20 ns, 1)

Copyright © 2024 Arizona Board of Regents

● Earliest Incoming Message Tag
○ The RTI uses EIMT for computing TAG signals

Challenges
(20 ns, 1)

NETC = (20 ns, 0) < EIMTC = (20 ns, 1)

Copyright © 2024 Arizona Board of Regents

Challenges

● Compute EIMTC = (t, m) when A’s next event tag is (ta, ma) and other
federates do not have any events

NETA (ta, ma)

DCA = (td, md)

(t, m) = A((ta, ma), (td, md))

 =

Copyright © 2024 Arizona Board of Regents

Challenges

● Compute EIMTC = (t, m) when A’s next event tag is (ta, ma) and other
federates do not have any events

NETA (ta, ma)

DCA = (td, md)

(t, m) = A((ta, ma), (td, md))

 =

Copyright © 2024 Arizona Board of Regents

DNET & Delays

NETC (tc, mc)

● A((ta, ma), (td, md)) > (tc, mc) to send TAGC (tc, mc)
● NETA (ta, ma) is unnecessary if A((ta, ma), (td, md)) <= (tc, mc)
● Define a function S to find the latest tag that satisfies

○ A((t, m), (td, md)) <= (tc, mc) where (t, m) = S((tc, mc), (td, md))
○ S acts like tag subtraction (X + D = C if X = C - D)

DCA = (td, md)

NETA (ta, ma)

Copyright © 2024 Arizona Board of Regents

DNET & Delays

NETC (tC, mC)

● Define a function S to find the latest tag that satisfies
○ A((t, m), (td, md)) <= (tc, mc) where (t, m) = S((tc, mc), (td, md))
○ S acts like tag subtraction (X = C - D -> X + D = C)

DCA = (td, md)

NETA (tA, mA)

(t, m) = S((tC, mC), (td, md))

 =

Copyright © 2024 Arizona Board of Regents

● G(DNET) is the latest tag that a federate doesn’t need to send NET
● R has an event at (100 ms, 0), what NETS (tS, mS) is unnecessary to

grant TAGR (100 ms, 0) to R?
○ (tS, mS) <= S(G(NETR), DRS) = S((100 ms, 0), (0, 0)) =(100 ms, 0)

DNET & Delays

NETS(tS, mS) NETR(100 ms, 0)

DRS = (0, 0)

S((tC, mC), (td, md))
=

Copyright © 2024 Arizona Board of Regents

DNET & Delays
● Sender skips sending NET with tags < G(DNETS),

where G(DNETS) is S(G(NETR), DRS)

NETS(tS, mS) NETR(tR, mR)

Copyright © 2024 Arizona Board of Regents

● G(DNETA) = S((100 ns, 0), (20 ns, 0)) = (80 ns, Mmax)
○ If (tA, mA) = G(DNET) = (80 ns, Mmax)

EIMTB = A((80 ns, Mmax), (20 ns, 0)) = (100 ns, 0) <= G(NETB)

○ If (tA, mA) = (81 ns, 0)

EIMTB = A((81 ns, 0), (20 ns, 0)) = (101 ns, 0) > G(NETB)

DNET & Delays S((tC, mC), (td, md))
=

NETA(tA, mA) NETB(100 ns, 0)

DBA = (20 ns, 0)

Copyright © 2024 Arizona Board of Regents

● G(DNETC) = S((100 ns, 0), (20 ns, 1)) = (79 ns, Mmax)
○ If (tA, mA) = G(DNET) = (79 ns, Mmax)

EIMTC = A((79 ns, Mmax), (20 ns, 1)) = (99 ns, 1) <= G(NETC)

○ If (tA, mA) = (80 ns, 0)

EIMTC = A((80 ns, 0), (20 ns, 1)) = (100 ns, 1) > G(NETC)

DNET & Delays S((tC, mC), (td, md))
=

NETC (100 ns, 0)NETA (tA, mA)

/ DCA = (20 ns, 1) /

Copyright © 2024 Arizona Board of Regents

● How to compute DNETj?
○ Look up every downstream federate
○ For each downstream federate i, find S((ti, mi), (tD, mD)), the latest

tag g satisfying A(g, (tD, mD)) <= (ti, mi)
○ Determine G(DNETj) as the minimum S((ti, mi), (tD, mD))

DNET Computation

NETi (ti, mi)

Dij = (tD, mD)

NETj (tj, mj)

Copyright © 2024 Arizona Board of Regents

Evaluation
● Sender produces outputs (MSGRS) sparsely

○ We assume Sender sends messages every 5 seconds
○ Total execution time is 500 seconds

● Counting the number of NET signals while varying the period of the
timer

Copyright © 2024 Arizona Board of Regents

Evaluation
● Number of NET Signals
Timer period 5 ms 10 ms 20 ms 50 ms 100 ms

Without DNET
(Baseline)

100,161 50,191 25,193 10,195 5,195

With DNET 677 385 301 288 297

Copyright © 2024 Arizona Board of Regents

Work-In-Progress
● Some LTC and TAG signals are also

unnecessary
● These can affect a program’s feasibility

Copyright © 2024 Arizona Board of Regents

Future Work
● Our solution’s effectiveness varies with the sender’s sparsity or

programs’ structure
○ When a sender sends messages every time, DNET is not needed
○ If a federate has too many upstream federates and have lots of

events, DNET may flood
● Dynamic control of DNET is needed to maximize its benefit

○ Set a threshold of events without producing any messages

Copyright © 2024 Arizona Board of Regents

Conclusion
● Our solution effectively reduces the network overhead of HLA-based

discrete event systems
● This is beneficial to systems that require precise timing control where

network communication cost is high
● Our future work further optimizes the network overhead of these kind

of systems

Copyright © 2024 Arizona Board of Regents

Thank you!

