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Introduction
● Determinism often matters in distributed cyber-physical systems
● HLA (high-level architecture) is one way to ensure determinism in 

distributed systems
○ But, HLA incurs a huge network overhead

https://slcontrols.com/solutions/smart-factory/ https://www.iiot-world.com/artificial-intelligence-ml/autonomous-vehicles/challeng
es-in-training-algorithms-for-autonomous-cars/ 

https://slcontrols.com/solutions/smart-factory/
https://www.iiot-world.com/artificial-intelligence-ml/autonomous-vehicles/challenges-in-training-algorithms-for-autonomous-cars/
https://www.iiot-world.com/artificial-intelligence-ml/autonomous-vehicles/challenges-in-training-algorithms-for-autonomous-cars/
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Background
A Lingua Franca program
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● Tagged Message (MSG)
○ A message with a tag

● Latest Tag Complete (LTC)
○ To notify that a federate has finished a tag

● Next Event Tag (NET)
○ To report the tag of the earliest unprocessed event

● Tag Advance Grant (TAG)
○ To grant a federate to advance its tag to G(TAG), the payload tag

Background
Centralized Coordination
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Motivating Example
Sparse Sender

Send a message 
at (100 ms, 0)
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Motivating Example
● Purposes of NET signals

○ Acquire TAG signals
○ Let the RTI grant TAG signals to other 

federates

Unnecessary!!
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Research goal 
● How can a federate avoid sending 

unnecessary NETs?

Unnecessary!!
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Approach
● Our Approach to eliminate unnecessary NET signals

○ Downstream Next Event Tag (DNET)
○ For each federate, the RTI computes the latest unnecessary NET
○ A federate does not need to send any NETs with a tag _g_ less 

than or equal to G(DNET), payload of DNET
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Approach

Unnecessary!!
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Challenges
● Logical Delay

○ To indicate logical time elapsing through a connection

MSG(20 ns, 0)
At (0, 0)
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Challenges MSG(g)

At (t, m)

d

g = 
(No Delay)
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● Minimum tag increment over all connections
○ Ex) DCA = (20 ns, 1) and DBC = (0, 1)

Challenges

At (0, 0)

MSG(20 ns, 0)

At (20 ns, 0)

MSG(20 ns, 1)
(20 ns, 1)
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● Earliest Incoming Message Tag (EIMT)
○ A’s event at (0, 0) may cause a message to C with tag (20 ns, 1)
○ C will not receive any message with a tag < (20 ns, 1) 

Challenges
(20 ns, 1)

EIMTC = (20 ns, 1)
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● Earliest Incoming Message Tag 
○ The RTI uses EIMT for computing TAG signals

Challenges
(20 ns, 1)

NETC = (20 ns, 0) < EIMTC = (20 ns, 1)
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Challenges

● Compute EIMTC = (t, m) when A’s next event tag is (ta, ma) and other 
federates do not have any events

NETA (ta, ma)

DCA = (td, md)

(t, m) = A((ta, ma), (td, md))

 = 
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DNET & Delays 
 

NETC (tc, mc)

● A((ta, ma), (td, md)) > (tc, mc) to send TAGC (tc, mc)
● NETA (ta, ma) is unnecessary if A((ta, ma), (td, md)) <= (tc, mc)
● Define a function S to find the latest tag that satisfies

○ A((t, m), (td, md)) <= (tc, mc) where (t, m) = S((tc, mc), (td, md))
○ S acts like tag subtraction (X + D = C if X = C - D)

DCA = (td, md)

NETA (ta, ma)
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DNET & Delays 
 

NETC (tC, mC)

● Define a function S to find the latest tag that satisfies
○ A((t, m), (td, md)) <= (tc, mc) where (t, m) = S((tc, mc), (td, md))
○ S acts like tag subtraction (X = C - D -> X + D = C)

DCA = (td, md)

NETA (tA, mA)

(t, m) = S((tC, mC), (td, md))

 = 
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● G(DNET) is the latest tag that a federate doesn’t need to send NET
● R has an event at (100 ms, 0), what NETS (tS, mS) is unnecessary to 

grant TAGR (100 ms, 0) to R?
○ (tS, mS) <= S(G(NETR), DRS) = S((100 ms, 0), (0, 0)) =(100 ms, 0)

DNET & Delays 

NETS(tS, mS) NETR(100 ms, 0)

DRS = (0, 0)

S((tC, mC), (td, md))
=  
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DNET & Delays
● Sender skips sending NET with tags < G(DNETS), 

where G(DNETS) is S(G(NETR), DRS)

NETS(tS, mS) NETR(tR, mR)
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● G(DNETA) = S((100 ns, 0), (20 ns, 0)) = (80 ns, Mmax)
○ If (tA, mA) = G(DNET) = (80 ns, Mmax)

EIMTB = A((80 ns, Mmax), (20 ns, 0)) = (100 ns, 0) <= G(NETB)

○ If (tA, mA) = (81 ns, 0)

EIMTB = A((81 ns, 0), (20 ns, 0)) = (101 ns, 0) > G(NETB)

DNET & Delays S((tC, mC), (td, md))
=  

NETA(tA, mA) NETB(100 ns, 0)

DBA = (20 ns, 0)
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● G(DNETC) = S((100 ns, 0), (20 ns, 1)) = (79 ns, Mmax)
○ If (tA, mA) = G(DNET) = (79 ns, Mmax) 

EIMTC = A((79 ns, Mmax), (20 ns, 1)) = (99 ns, 1) <= G(NETC)

○ If (tA, mA) = (80 ns, 0)

EIMTC = A((80 ns, 0), (20 ns, 1)) = (100 ns, 1) > G(NETC)

DNET & Delays S((tC, mC), (td, md))
=  

NETC (100 ns, 0)NETA (tA, mA)

/ DCA = (20 ns, 1) /
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● How to compute DNETj?
○ Look up every downstream federate
○ For each downstream federate i, find S((ti, mi), (tD, mD)), the latest 

tag g satisfying A(g, (tD, mD)) <= (ti, mi)
○ Determine G(DNETj) as the minimum S((ti, mi), (tD, mD))

DNET Computation

NETi (ti, mi)

Dij = (tD, mD)

NETj (tj, mj)
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Evaluation
● Sender produces outputs (MSGRS) sparsely

○ We assume Sender sends messages every 5 seconds
○ Total execution time is 500 seconds

● Counting the number of NET signals while varying the period of the 
timer
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Evaluation
● Number of NET Signals 
Timer period 5 ms 10 ms 20 ms 50 ms 100 ms

Without DNET 
(Baseline)

100,161 50,191 25,193 10,195 5,195

With DNET 677 385 301 288 297
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Work-In-Progress
● Some LTC and TAG signals are also 

unnecessary
● These can affect a program’s feasibility
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Future Work
● Our solution’s effectiveness varies with the sender’s sparsity or 

programs’ structure
○ When a sender sends messages every time, DNET is not needed
○ If a federate has too many upstream federates and have lots of 

events, DNET may flood
● Dynamic control of DNET is needed to maximize its benefit

○ Set a threshold of events without producing any messages
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Conclusion
● Our solution effectively reduces the network overhead of HLA-based 

discrete event systems
● This is beneficial to systems that require precise timing control where 

network communication cost is high
● Our future work further optimizes the network overhead of these kind 

of systems
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Thank you!


