Demo Abstract: Cost-Effective Rover for Farms

<u>Pawan Kumar</u>, Yejur Dube and Hokeun Kim

School of Computing and Augmented Intelligence Arizona State University

16th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS)

CPS-IoT Week 2025

May 7, 2025, Irvine, CA, USA

Motivation & Challenges

- Precision Agriculture
 - Data-driven monitoring
 - Sustainable
 - Can be expensive
- Reduce labor shortages
- High commercial agricultural robot cost, need for an affordable rover
- No detailed cost breakdown in existing rovers for precision agriculture
- Customizable design

Initial Rover

Issues with the initial design:

- Tires wore out too quickly on rough terrain.
- High power consumption.
- Lacked space to add extra batteries

Proposed Prototype Rover

- It has ethylene vinyl acetate (EVA) tires.
- It has an emergency braking feature.
- It can be controlled using Android App or webpage

Dimensions (in mm) of our rover.

Challenges

- Wood was chosen as the pole mount for its availability and sustainability.
- The camera's weight made the structure unstable at higher speeds.
- To ensure stability, the wood had to be processed further before securing it to the rover.

Challenge encountered with the prototype

Example Application

Example application using YOLO

Remaining Challenges

- Low traction
- Too bulky
- Obstacle sensitivity
- Limited visibility
- Lack of generalized training data

Future Work

- Autonomous navigation
- Speed control
- Deploy drones
- Design space exploration

