

Energy-Efficient Bus Encoding Techniques for Next-Generation PAM-4 DRAM Interfaces

Youri Su, Sanghun Lee, Eunji Song, Dongha Kim, Jaeduk Han, and Hokeun Kim

Dept. of Electronic Engineering, Hanyang University IoT Lab & Nifty Chips Lab

DRAM BW Trends

 Per-pin data rates of computing and graphic DRAM interface increase 2x every 3-4 years

Signal Modulation

- Channel BW is limited because of the physical limitation of PCB
- PAM-4* sends 2 bits per symbol
 - Reduce the Nyquist Frequency for the same data-rate
 - Widely adopted in recent high-speed interfaces

^{*}PAM-4 stands for Pulse Amplitude Modulation 4-level

Power Consumption and Channel Structure

Power consumption

- 1) Termination power: static current flow through termination R
- 2) Switching power: energy for charging the channel capacitance
- POD(Pseudo Open Drain) Termination
 - No DC current (zero power consumption) when data is high
- DBI: (Conditionally) inverts symbols to reduce the termination power
 - Based on the # of zeros with the DBI flag

[DBI Table in NRZ]

Data	Data Encoded	DBI Flag	# of Zeros
00000000	11111111	1	0
00000001	11111110	1	1
00000011	11111100	1	2
00000111	11111000	1	3
00001111	11110000	1	4
00011111	11100000	0	4
00111111	11000000	0	3
01111111	10000000	0	2
11111111	00000000	0	1

Motivation to Modify DBI for PAM-4 Signaling

- PAM-4 signaling has 4 different levels of power consumption
- Conventional DBI is inadequate for the PAM-4 signaling

Related Work

CDR ^[9]	 Uses Software & Hardware to adjust the order of data Reduces termination power NRZ
AWR ^[10]	 Dynamic reordering of data words (NN algorithm) Reduces switching power NRZ
STFL-DDR ^[11]	 Uses a high-performance clock rate in low-power wires Reduces power consumption
SMOREs [12]	 Utilize the idle period using longer energy-efficient code Reducing switching power PAM4

Our proposed Encoding methods

- Reducing termination power on PAM-4 signaling
- Moderate overhead, without affecting the transmission rate and latency

[9] B. Feinberg et al., 2020 "Commutative data reordering: a new technique to reduce data movement energy on sparse inference workloads" [10] E. Maragkoudaki et al., 2020 "Energy-efficient time-based adaptive encoding for off-chip communication"

[11] P. Behnam et al., 2020 "STFL-DDR: Improving the energy- efficiency of memory interface" [12] M. O'Connor et al., 2022 "Saving PAM4 bus energy with SMOREs: Sparse multi-level opportunistic restricted encodings"

Reducing Transfer Energy with Bus Data Encoding

Encoding Algorithms for Reducing Termination Power

- NRZ (Not PAM4)
 - Algorithm 1: NRZ-DBI
- PAM4
 - Algorithm 2: PAM4-DBI (Extension of Algorithm 1)
 - Algorithm 3: PAM4-MF (New Proposed)
 - Algorithm 4: PAM4-Sort (New Proposed)

Algorithm 1 NRZ-DBI

- Symbol 1 consumes less power
- Invert if the # of 1s ≤ 4 ⇒ Return with invFlag

```
invFlag = 0
2:
    if sum(oneWord) \le 4 then \Rightarrow # of 1s \le 4
3:
4:
         INVERT(oneWord)
         invFlag = 1
5:
6: return oneWord, invFlag
Ex)
(# of 0s < # of 1s)
                                                       Non-inverted, invFlag = 0
(# of 0s > # of 1s)
                                                       Inverted, invFlag = 1
```

NRZ_DBI_ENCODING(*oneWord*) ⇒ *oneWord*: 8-bit single word

Algorithm 2 PAM4-DBI

• Invert if Pnondbe > Pdbe ⇒ Return with invFlag

Symbol	00	01	10	11
Power Consumption	$\frac{V_{DD}^2}{100}$	$\frac{V_{DD}^2}{112.5}$	$\frac{V_{DD}^2}{180}$	0

$$\frac{cnt00}{100} + \frac{cnt01}{112.5} + \frac{cnt10}{180} + cnt11 \times 0 > \frac{cnt11}{100} + \frac{cnt10}{112.5} + \frac{cnt01}{180} + cnt00 \times 0$$

- 1: **PAM4_DBI_ENCODING**(twoWords) $\Rightarrow twoWords$: 2x8-bit two words
- 2: invFlag = 0
- 3: if $3 \times (cnt00 cnt11) > cnt10 cnt01$ then
- 4: INVERT(twoWords)
- 5: invFlag = 1
- 6: return twoWords, invFlag

Algorithm 3 PAM4-MF (Proposed)

- Count each symbol's number
- ⇒ Find the **Most Frequent** symbol
- ⇒ Swap with 11
- ⇒ Return with **Most Frequent symbol** (2-bit)
- Minimal circuit logic overhead

- 1: **PAM4_MF_ENCODING**(twoWords) $\Rightarrow twoWords$: 2x8-bit two words
- 2: COUNT(twoWords) \Rightarrow Get cnt00, cnt01, cnt10
- 3: MF_CONVERT(twoWords, Symbol)
 - ⇒ *Symbol*: Most Frequent Symbol
 - ⇒ MF_CONVERT: Swap *Symbol* with 11
- 4: return twoWords, Symbol

Algorithm 4 PAM4-Sort (Proposed)

- Count each symbol's number
- ⇒ **Sort** the numbers of each symbol
- ⇒ Swap each symbol to match sorted numbers of symbol
- ⇒ Return with the matched permutation number (4!⇒5-bit)
- Permutation number represents the case number

- 1: **PAM4_SORT_ENCODING**(twoWords) $\Rightarrow twoWords$: 2x8-bit two words
- 2: SORT(COUNT(twoWords)) \Rightarrow Sort the number of each symbol
- 3: SORT_CONVERT(twoWords, permutation)
 - ⇒ SORT_CONVERT: Swap each symbol to match the case
 - ⇒ *permutation*: Represents the case number
- 4: return twoWords, permutation

Hardware Cost

Encoding Algorithm	NRZ-DBI	PAM4-DBI	PAM4-MF	PAM4-Sort
Word Length (bits)	8	16	16	16
Flag Wires (lanes)	1	1	1	2.5
Required Hardware Logic	2 Counters, Bitwise inverter	4 Counters, Bitwise inverter	4 Counters, Symbol swapper	4 Counters, Symbol sorter, Symbol swapper

Experimental Setup

Processor	Out of order (O3)	
Cache	L1: I-cache (32kB) D-cache (64kB) L2 (2MB)	
DRAM	DDR4_2400_16x4, 1 channel, 512MB	

$$Ratio_{power}(\%) = \frac{Power_{DBE}}{Power_{nonDBE}} \times 100(\%)$$

Termination Power

- Termination Power is reduced in ALL cases
- Overall effectiveness of the encoding schemes for POD I/Os

Termination Power

- Relations between power saving ratio and frequency of 00 symbols
- ⇒ The more **00**, the more **effective** it is

Switching Power

- Switching power was reduced for all benchmark programs
 - PAM4-MF by 7-9% and PAM4- Sort by more than 20%

Summary

PAM4-MF	 Swaps the most frequent symbol with the least power-consuming symbol 11 Decent improvement (26.15% ~ 98.06%) compared with PAM4-DBI (17.02% ~ 98.46%) Simple procedure
PAM4-Sort	 Sorts the entire symbol constellation based on their frequencies and power consumption Highest energy efficiency (32.93% ~ 98.77)

- Both reduce termination power and dynamic power
- Future work
 - Physical implementation to study their feasibility at the circuit level

Thank You!

ICCD 2022 in Lake Tahoe, CA

Dept. of Electronic Engineering, Hanyang University IoT Lab & Nifty Chips Lab