FDL 2025 Work-in-Progress Paper Q I Z

Efficient Privacy-Preserving

Federated Learning on Edge
with Reconfigurable FPGA

ASU KIM Forum on specification & Design Languages
INTERACTIVE MAGHINES Sep 10, 2025, at St. Goar, Germany

" Arizona State Byeonggil Jun, Megan Kuo,
University Aditya A. Krishnan, and Hokeun Kim

1



Introduction
e Federated Learning (FL) is often integrated with

Fully Homomorphic Encryption (FHE)!" to Enhance Privacy
e However, FHE with FL has excessive comp/mem overhead

e Our WIiP Solution: FPGA-based acceleration of FHE+FL
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System Model & Motivation

e Resource-constrained clients on the
Edge use FPGAs with limited capacity

e Occasional FHE operations vs.
Continuous ML Workload

e Dynamic Partial Reconfiguration
(DPR) for efficiently using FPGA
resources
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Work-in-Progress Approach

e Replace some general matrix multiplication (GEMM) modules with
encryption/decryption modules for parameter aggregation (WiP)
e Ensure the availability of inference

Training & FHE acceleration
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Challenges

e Coordinating FL with dynamic reconfiguration in FPGA
o E.g., FL update scheduling, Variable number of GEMM modules
e Optimization of trade-off between ML vs. FHE performance
o E.g., Replacing GEMM modules slows down the training speed
e Utilizing interconnect for reconfigurable vs. non-reconfigurable areas
o E.g., Interconnect must be static - how can we maximize the
interconnect utilization?



Proof-of-Concept Implementation

e Use BGVP an FHE algorithm,
and LeNet-5, a simple CNN

e Reconfigure the area for training
for FL model updates
(aggregating parameters)

e Use the full reconfiguration

instead of partial reconfiguration
(For now)
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Bootstrapping. ACM Trans. Comput. Theory 6, 3, Article 13 (July 2014), 36 pages.

inference and training modules.



Preliminary Evaluation of PoC Implementation

e Evaluated on AMD/Xilinx U55C FPGA
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Conclusion & Future Work

e A WIP efficient PoC FPGA-accelerated FL client system using
reconfiguration

e Future work toward DPR of the PoC by addressing the remaining
challenges
o Design the accelerator using GEMM modules
o Examine the trade-off between ML vs. FHE performance

e Extension to consider the design for the servers, especially for

decentralized federated learning®® (any node can perform model
aggregation)

[3] E. T. Martinez Beltran et al., "Decentralized Federated Learning: Fundamentals, State of the Art, Frameworks, Trends, and 8
Challenges," in IEEE Communications Surveys & Tutorials, vol. 25, no. 4, pp. 2983-3013, Fourthquarter 2023



e Contact
o byeongqgil@asu.edu (Byeonggil Jun: Lead Author)
o hokeun@asu.edu (Hokeun Kim: Presenter)

o https://labs.engineering.asu.edu/kim/ (ASU KIM Lab)

Thank you!

e PoC Implementation
o https://aithub.com/asu-kim/fpga-fl-bgv
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