

FDL 2025 Work-in-Progress Paper

Efficient Privacy-Preserving Federated Learning on Edge with Reconfigurable FPGA

Forum on specification & Design Languages

Sep 10, 2025, at St. Goar, Germany

Arizona State Byeonggil Jun, Megan Kuo,
University Aditya A. Krishnan, and Hokeun Kim

Introduction

- Federated Learning (FL) is often integrated with
 Fully Homomorphic Encryption (FHE)^[1] to Enhance Privacy
- However, FHE with FL has excessive comp/mem overhead
- Our WiP Solution: FPGA-based acceleration of FHE+FL

[1] Gong, Y., Chang, X., Mišić, J. et al. Practical solutions in fully homomorphic encryption: a survey analyzing existing acceleration methods. Cybersecurity 7, 5 (2024).

System Model & Motivation

- Resource-constrained clients on the Edge use <u>FPGAs with limited capacity</u>
- Occasional FHE operations vs.
 Continuous ML Workload
- Dynamic Partial Reconfiguration (DPR) for efficiently using FPGA resources

Only Used Occasionally (Not Always Needed)

FPGA Board

Work-in-Progress Approach

- Replace some general matrix multiplication (GEMM) modules with encryption/decryption modules for parameter aggregation (WiP)
- Ensure the availability of inference

Challenges

- Coordinating FL with dynamic reconfiguration in FPGA
 - E.g., FL update scheduling, Variable number of GEMM modules
- Optimization of trade-off between ML vs. FHE performance
 - E.g., Replacing GEMM modules slows down the training speed
- Utilizing interconnect for reconfigurable vs. non-reconfigurable areas
 - E.g., Interconnect must be static how can we maximize the interconnect utilization?

Proof-of-Concept Implementation

- Use BGV^[2], an FHE algorithm, and LeNet-5, a simple CNN
- Reconfigure the area for training for FL model updates (aggregating parameters)
- Use the full reconfiguration instead of partial reconfiguration (For now)

Encryption Decryption

Recon-

6

a) An FPGA configuration with b) An FPGA configuration with inference and training modules.

Recon-

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) Fully Homomorphic Encryption without Bootstrapping. ACM Trans. Comput. Theory 6, 3, Article 13 (July 2014), 36 pages.

Local

Preliminary Evaluation of PoC Implementation

Evaluated on AMD/Xilinx U55C FPGA

a) An FPGA configuration with b) An FPGA configuration with inference and training modules.

Task on FPGA	LUTs	Latency
FHE Modules	108,179	1.79 ms
Inference	48,961	1.89 ms
Training	92,649	4.03 ms

Task	Latency
Full Reconfiguration	3,912.00 ms

Conclusion & Future Work

- A WiP efficient PoC FPGA-accelerated FL client system using reconfiguration
- Future work toward DPR of the PoC by addressing the remaining challenges
 - Design the accelerator using GEMM modules
 - Examine the trade-off between ML vs. FHE performance
- Extension to consider the design for the servers, especially for decentralized federated learning^[3] (any node can perform model aggregation)

Contact

- byeonggil@asu.edu (Byeonggil Jun: Lead Author)
- hokeun@asu.edu (Hokeun Kim: Presenter)
- https://labs.engineering.asu.edu/kim/ (ASU KIM Lab)

Thank you!

- PoC Implementation
 - https://github.com/asu-kim/fpga-fl-bgv

