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Disclaimer

* This is a Wild-and-Crazy-ldea Paper

 Ambitious, concrete, and realizable ideas/plans not
implemented yet (some are work-in-progress)

 Futuristic and immature plans needing more
investigation and discussion



Background — Federated Learning

« Common architecture of federated learning (FL)
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Image from https://blogs.nvidia.com/blog/what-is-federated-learning/
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Background — Federated Learning

* Benefits of federated learning (FL)

* Raw training data stays locally; only model info is shared
* Example 1: Patients' medical records do not leave the hospital

 Example 2: Home loT data (sensor data, images, activity logs) is not
shared with the cloud

* Enhanced privacy compared to the centralized ML model
* Less communication overhead for sending bulky raw data

* But, aggregation server can still learn sensitive infolll

* Inference of sensitive information using shared model
parameters!?]

[1] Sharma, and Mohanty, “Preserving data privacy via federated learning: Challenges and solutions,” IEEE Consumer Electronics Magazine, 2020.
[2] Pyrgelis et al., “Knock knock, who's there? Membership inference on aggregate location data,” in NDSS 2018.
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Background
— Further Privacy-Preserving FL

* Multiple ways to protect the privacy of the ML
models shared by FL clients
* Differential privacy!!
 Statistical approach

* Homomorphic encryption (HE)!2!
* Cryptography-based approach

[1] K. Wei et al., “Federated learning with differential privacy: Algorithms and performance analysis,” IEEE TIFS, 2020.
[2] C. Zhang, et al., “BatchCrypt: Efficient homomorphic encryption for Cross-Silo federated learning,” in USENIX ATC 2020.

* Homomorphic encryption (HE)
e Stronger guarantees compared to differential privacy
* However, much more expensive (than diff. privacy)



Background

— Homomorphic Encryption (HE)

Cllent 2
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* Arithmetic computation over ciphertext (encrypted data)
w/o knowing crypto key or plaintext (unencrypted data)

*Common arithmetic operations supported by HE are addition and multiplication.
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Background — HE-enabled FL

* ML parameters (weights) are encrypted with HE
* Encrypted parameters are sent to aggregation server

* Model aggregation is essentially a weighted sum
computation with multiplications (% ) & additions ()
* E.g., FedAvg
* Pi+1 < Zk OWk Di
« X and = can be performed on encrypted data

e Aggregation server can perform model aggregation
without knowing plaintext parameters from FL clients



Overall System Model

* Edge Computing-based Centralized FL w/ HE Privacy-Preserving
Model Aggregation
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Target System for Platform Design:
FL client w/ HE running on the edge

Heterogeneous workloads - 2%
&b

& requirements!

(1) ML (FL) FL(Federat.e Learning)

* High volume of low-precision comp. client \

* Accelerated by TPUs/GPUs j @

(2) HE Specia—lized Edge HW/SW
Platform For HE-enabled FL

* Massive memory bandwidth
* Computation heavy (e.g., bootstraping*)
¢ ReqUireS HBM* DRAM and HPCik Bootstraping: Process of refreshing ciphertex

 HBM: High bandwidth memory
 HPC: High performance computing9



Threat Model

Privacy-Preserving Honest-but-curious server model

Model Aggregation using HE
lel Parameters using
1orphic Encryption)

* Widely used model in privacy-
preserving FL approaches!ili2]

d CIoud Server

?
Model Update via HE

* (Honest) aggregation server is
trusted for computation

 However, FL clients still do not
want to expose ML model
parameters (sensitive info)

[1] ). Le, et al., “Privacy- preserving federated learning with
malicious clients and honest-but-curious servers,” IEEE TIFS 2023.
[2] C. Zhang, et al., “BatchCrypt: Efficient homomorphic encryption
for Cross-Silo federated learning,” in USENIX ATC 2020.
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Proposed Platform Design Process

Redesign FL to Minimize the HE Overhead

® Redesign FL to Optimize HE Operations

I

. : @ Design/Config FL @ Identify Required @ Estimate :
@ Appllcatlon Ijl> ' | Algorithms and Model If‘> HE Operations for FL |f‘> Overhead of HE |!
Requirements ! : : . |
: Aggregation Methods Model Aggregation Operations !
© Redesign SW (FL/HE) to (i) SW (FL/HE) Design Processes ﬂ
Optimize Performance

E @ Validation and
'|  Evaluation of HW/SW <] ® HW/sW Co- <:| and HE

imization
Platform opt

(ii) HW (Edge Computing HW Platform) Design Processes

© Redesign HW to Optimize FL/HE Performance



Specifying FL Application Requirements

* First and critical step
* Problem (application) domain

@ Application
Requirements ° Data types

* ML model's inputs/outputs

* Required performance
(e.g., latency, accuracy, cost, etc.)



Software Design

Redesign FL to Minimize the HE Overhead

® Redesign FL to Optimize HE Operations

I

L '| (2) Design/Config FL (3) Identify Required (@) Estimate :
%2 ﬁ?zlr:]aet::: If‘> i Algorithms and Model If‘> HE Operations for FL |j‘> Overhead of HE | !
g : Aggregation Methods Model Aggregation Operations :

(i) SW (FL/HE) Design Processes

* Possible SW optimizations * Design/config parameters

* Div1 « 2NZIwy - p; » Aggregation algorithms
Update from a subset of FL clients
Model update frequency

« X is more expensive than ¥ in HE

* Let FL clients know their weights &
have them send weighted params

Size/complexity of ML models

* Reduces server computation time, HE algorithms

thus, reduces model update latency



Hardware Design

* Design challenges
* Heterogenous computation/mem requirements
* Traditional computer arch can't support HE efficiently

* Enormous ciphertext length (does not fit in on-chip
@Applic
mem, e.g., caches)

Requirem
* Necessary to reduce off-chip mem transactions (e.g.,

data reuse, in-mem computation, etc.)

______________________________________________________________________

@ Validation and

Evaluation of HW/SW <] ® H.W./SV\./ Co- <] and HE
optimization
Platform

(ii) HW (Edge Computing HW Platform) Design Processes

© Redesign HW to Optimize FL/HE Performance



'terative SW/HW Design Process

Redesign FL to Minimize the HE Overhead

® Redesign FL to Optimize HE Operations

I

. '| () Design/Config FL (3) Identify Required (@) Estimate :
%2 ﬁ?zlr:]aet;i: Ijl> i Algorithms and Model If‘> HE Operations for FL |f‘> Overhead of HE | !
g : Aggregation Methods Model Aggregation Operations :
® Redesign SW (FL/HE) to (i) SW (FL/HE) Design Processes ﬂ
Optimize Performance

E @ Validation and
'|  Evaluation of HW/SW <] ® HW/sW Co- <:| and HE

imization
Platform opt

(ii) HW (Edge Computing HW Platform) Design Processes

© Redesign HW to Optimize FL/HE Performance



HW/SW Platform Design Strategies

* (1) Profiling & analysis of HW requirements

* Public dataset examples for FL training
* Texas A&M University Electric Grid Datasets!!]
* Columbia University Synthetic Power Grid Data Set!?]

\ i T

* Prototype FL + HE with open-source software "% .

* FL: Flowerl3, NVIDIA FLARE® b 4
e HE: OpenFHEP!]

[1] https://electricgrids.engr.tamu.edu/

[2] https://wimnet.ee.columbia.edu/portfolio/synthetic-power-grids-data-sets/
[3] https://flower.ai/

[4] https://developer.nvidia.com/flare

[5[ https://www.openfhe.org/
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HW/SW Platform Design Strategies

* (2) Design space exploration (DSE)
e Using profiled HW requirements & COTS HW components
* Develop dedicated HW using FPGA if necessary

* Commonly used components in HE acceleration
 Number theoretic transform (NTT)
e Multi-scalar multiplication (MSM)

* (3) Design of accelerators

* Based on DSE results, especially bottlenecks that can be
accelerated by HW

 Start with the previously proposed HE accelerator ideas,
e.g., F1111 (with HBM), FLASH!2! (without HBM)

[1] N. Samardzic et al., “F1: A fast and programmable accelerator for fully homomorphic encryption,” Micro 2021
[2] J. Zhang et al., “FLASH: Towards a high-performance hardware acceleration architecture for cross-silo federated
learning,” NSDI 2023 17



HW/SW Platform Design Strategies

* (4) Acceleration via approximate computing
* FL (ML) applications are error tolerant

* HE with approximate computing — enhanced speed,
power efficiency, relaxed HW requirements

Error Tolerance Feedback

HE Error Budget g

Approximate
Computing Error If‘>

Model
FL Error Budget| <.

i)

Accuracy-
Performance
Trade-off

Accuracy
Evaluation




HW/SW Platform Design Strategies

* (5) Middleware and runtime for optimized usage of
the underlying hardware
 Software stack in HPC environments is criticall!]
 E.g., task scheduling and I/0 management
* Memory management policies
 Scheduling of computation, mem usage, and 1/0 ops.
* Fine-grained control of hardware components
 Balance inference service vs. training/model update (HE)

[1] D. Boehme et al., “Caliper: performance introspection for HPC software stacks,” SC'16



Strategies as Codesign

HE-Enabled FL

FL configurations,
HE operations

Accuracy
requirements

Co-
Design

Accuracy
loss

Security/privacy,
ML performance
requirements

Efficiency (e.g., latency,

HW/SW Co- ) throughput, power) . ( Approximate
Optimization | < | Computing

) Choice of HW components (e.g.,
accelerators, HBM, GPUs,
processing elements)



Application Areas

* ML applications with a limited volume of sensitive,
high-value local data
* No need for FL if the local data volume is enough
* Not worth HE if nonsensitive or little value data

* FL involving entities that can afford the cost of a
dedicated HW/SW platform

* Benefit of platform > cost of platform

* Possible application domains
* Healthcare/medical insurance
 Critical infrastructure (power grids, transportation, etc.)
* Intrusion/malware detection



Thank you for your attention!

Summary

* Privacy-preserving FL with HE is promising

e FL with HE has high mem/computation requirements
* Dedicated SW/HW platform is needed

e FL with HE has great optimization potential in SW/HW

e We plan to address the SW/HW platform design
challenges with the aforementioned five strategies

Contact Information for Further Discussions
 https://hokeun.github.io, hokeun@asu.edu
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