
Platform Design for
Privacy-Preserving Federated Learning

using Homomorphic Encryption

*Assistant Prof. @Arizona State University
‡Associate Prof. @ Purdue University

§Associate Prof. @ Santa Clara University

Forum on specification and Design Languages (FDL) 2024
@ KTH, Stockholm, Sweden

Session 3: Design Optimization and Exploration

Thursday, September 5, 2024

Wild-and-Crazy-Idea Paper

Hokeun Kim*, Younghyun Kim‡, Hoeseok Yang§

Disclaimer

• This is a Wild-and-Crazy-Idea Paper
• Ambitious, concrete, and realizable ideas/plans not

implemented yet (some are work-in-progress)
• Futuristic and immature plans needing more

investigation and discussion

2

Background – Federated Learning
• Common architecture of federated learning (FL)

3

Image from https://blogs.nvidia.com/blog/what-is-federated-learning/

FL Client

FL Client

FL Client

Locally Trained

Model Parameters

Locally Trained Model

Locally Trained Model

Aggregation
(Federated)

Server

Updated (Aggregated)

Model Parameters

Updated Model

Updated Model

https://blogs.nvidia.com/blog/what-is-federated-learning/

Background – Federated Learning

• Benefits of federated learning (FL)
• Raw training data stays locally; only model info is shared

• Example 1: Pa9ents' medical records do not leave the hospital
• Example 2: Home IoT data (sensor data, images, ac9vity logs) is not

shared with the cloud
• Enhanced privacy compared to the centralized ML model
• Less communica<on overhead for sending bulky raw data

4

[1] Sharma, and Mohanty, “Preserving data privacy via federated learning: Challenges and solu?ons,” IEEE Consumer Electronics Magazine, 2020.
[2] Pyrgelis et al., “Knock knock, who’s there? Membership inference on aggregate loca?on data,” in NDSS 2018.

• But, aggregation server can still learn sensitive info[1]

• Inference of sensitive information using shared model
parameters[2]

Background
– Further Privacy-Preserving FL
• Multiple ways to protect the privacy of the ML

models shared by FL clients
• Differential privacy[1]

• Statistical approach
• Homomorphic encryption (HE)[2]

• Cryptography-based approach

5

[1] K. Wei et al., “Federated learning with differential privacy: Algorithms and performance analysis,” IEEE TIFS, 2020.
[2] C. Zhang, et al., “BatchCrypt: Efficient homomorphic encryption for Cross-Silo federated learning,” in USENIX ATC 2020.

• Homomorphic encrypLon (HE)
• Stronger guarantees compared to differen<al privacy
• However, much more expensive (than diff. privacy)

Background
– Homomorphic Encryption (HE)

• ArithmeLc computaLon over ciphertext (encrypted data)
w/o knowing crypto key or plaintext (unencrypted data)

6

3 4

*Common arithmetic operations supported by HE are addition and multiplication.

? ?

Client 1

Server

?

?

Client 2 7
Decrypted

?

Encrypted

?

Encrypted

Background – HE-enabled FL

• ML parameters (weights) are encrypted with HE
• Encrypted parameters are sent to aggregaLon server
• Model aggregaLon is essenLally a weighted sum

computaLon with mulLplicaLons (✖) & addiLons (➕)
• E.g., FedAvg
• 𝑝!"# ←	∑$%&'(#𝑤$ & 𝑝!

•✖ and ➕ can be performed on encrypted data
• AggregaLon server can perform model aggregaLon

without knowing plaintext parameters from FL clients

7

Overall System Model

8FL Client

Privacy-Preserving
Model AggregaEon

using HE
Sharing Model Parameters using
HE (Homomorphic Encryption)

Model Update
(w/ Encrypted Params)

Centralized Cloud Server

FL (Federated Learning)
Client

Specialized Edge HW/SW
Platform For HE-enabled FL

FL Client FL Client

• Edge CompuLng-based Centralized FL w/ HE

Target System for Platform Design:
FL client w/ HE running on the edge

9

(1) ML (FL)
• High volume of low-precision comp.
• Accelerated by TPUs/GPUs
(2) HE
• Massive memory bandwidth
• ComputaLon heavy (e.g., bootstraping*)
• Requires HBM* DRAM and HPC*

Heterogeneous workloads
& requirements!

• Bootstraping: Process of refreshing ciphertext in HE
• HBM: High bandwidth memory
• HPC: High performance computing

FL (Federated Learning)
Client

Specialized Edge HW/SW
Platform For HE-enabled FL

Threat Model
Honest-but-curious server model

10

FL (Federated Learning)
Client

FL Client

Privacy-Preserving
Model Aggregation using HE

Sharing Model Parameters using
HE (Homomorphic Encryption)

Model Update via HE

Specialized Edge HW/SW
Platform For HE-enabled FL

Centralized Cloud Server

FL Client FL Client [1] J. Le , et al., “Privacy- preserving federated learning with
malicious clients and honest-but-curious servers,” IEEE TIFS 2023.
[2] C. Zhang, et al., “BatchCrypt: Efficient homomorphic encryp\on
for Cross-Silo federated learning,” in USENIX ATC 2020.

• Widely used model in privacy-
preserving FL approaches[1][2]

• (Honest) aggregation server is
trusted for computation

• However, FL clients still do not
want to expose ML model
parameters (sensitive info)

Proposed Platform Design Process

② Design/Config FL
Algorithms and Model
AggregaIon Methods

③ Identify Required
HE Operations for FL
Model Aggregation

④ EsImate
Overhead of HE

OperaIons

⑤ Analyze FL
and HE

Computation

⑥ HW/SW Co-
optimization

⑦ ValidaIon and
EvaluaIon of HW/SW

PlaYorm

Ⓐ Redesign FL to Optimize HE Operations

Ⓑ Redesign FL to Minimize the HE Overhead

Ⓒ Redesign HW to OpImize FL/HE Performance

Ⓓ Redesign SW (FL/HE) to
Optimize Performance

(i) SW (FL/HE) Design Processes

(ii) HW (Edge Computing HW Platform) Design Processes

① Application
Requirements

11

Specifying FL Application Requirements

① Application
Requirements

12

• First and critical step
• Problem (application) domain
• Data types
• ML model's inputs/outputs
• Required performance

(e.g., latency, accuracy, cost, etc.)

SoFware Design

② Design/Config FL
Algorithms and Model
Aggregation Methods

③ Identify Required
HE Operations for FL
Model Aggregation

④ EsImate
Overhead of HE

OperaIons

Ⓐ Redesign FL to Optimize HE Operations

Ⓑ Redesign FL to Minimize the HE Overhead

(i) SW (FL/HE) Design Processes

① Application
Requirements

13

• Design/config parameters
• Aggregation algorithms
• Update from a subset of FL clients
• Model update frequency
• Size/complexity of ML models
• HE algorithms

• Possible SW op<miza<ons
• 𝑝!"# ←	∑$%&'(#𝑤$ & 𝑝!
• ✖ is more expensive than ➕ in HE
• Let FL clients know their weights &

have them send weighted params
• Reduces server computa9on 9me,

thus, reduces model update latency

Hardware Design

② Design/Config FL
Algorithms and Model
Aggregation Methods

③ Identify Required
HE Operations for FL
Model Aggregation

④ EsImate
Overhead of HE

OperaIons

⑤ Analyze FL
and HE

Computation

⑥ HW/SW Co-
opImizaIon

⑦ Validation and
Evaluation of HW/SW

Platform

Ⓐ Redesign FL to OpImize HE OperaIons

Ⓑ Redesign FL to Minimize the HE Overhead

Ⓒ Redesign HW to Optimize FL/HE Performance

(i) SW (FL/HE) Design Processes

(ii) HW (Edge CompuIng HW PlaYorm) Design Processes

① Application
Requirements

14

• Design challenges
• Heterogenous computation/mem requirements
• Traditional computer arch can't support HE efficiently
• Enormous ciphertext length (does not fit in on-chip

mem, e.g., caches)
• Necessary to reduce off-chip mem transactions (e.g.,

data reuse, in-mem computation, etc.)

IteraIve SW/HW Design Process

② Design/Config FL
Algorithms and Model
AggregaIon Methods

③ Identify Required
HE Operations for FL
Model Aggregation

④ Estimate
Overhead of HE

Operations

⑤ Analyze FL
and HE

ComputaIon

⑥ HW/SW Co-
optimization

⑦ ValidaIon and
EvaluaIon of HW/SW

PlaYorm

Ⓐ Redesign FL to Optimize HE Operations

Ⓑ Redesign FL to Minimize the HE Overhead

Ⓒ Redesign HW to OpImize FL/HE Performance

Ⓓ Redesign SW (FL/HE) to
Optimize Performance

(i) SW (FL/HE) Design Processes

(ii) HW (Edge CompuIng HW PlaYorm) Design Processes

① Application
Requirements

15

HW/SW Platform Design Strategies

• (1) Profiling & analysis of HW requirements
• Public dataset examples for FL training

• Texas A&M University Electric Grid Datasets[1]

• Columbia University Synthe9c Power Grid Data Set[2]

• Prototype FL + HE with open-source soXware
• FL: Flower[3], NVIDIA FLARE[4]

• HE: OpenFHE[5]

16

[1] https://electricgrids.engr.tamu.edu/
[2] https://wimnet.ee.columbia.edu/portfolio/synthetic-power-grids-data-sets/
[3] https://flower.ai/
[4] https://developer.nvidia.com/flare
[5[https://www.openfhe.org/

https://electricgrids.engr.tamu.edu/
https://wimnet.ee.columbia.edu/portfolio/synthetic-power-grids-data-sets/
https://flower.ai/
https://developer.nvidia.com/flare
https://www.openfhe.org/

HW/SW Platform Design Strategies

• (3) Design of accelerators
• Based on DSE results, especially boZlenecks that can be

accelerated by HW
• Start with the previously proposed HE accelerator ideas,

e.g., F1[1] (with HBM), FLASH[2] (without HBM)

17

[1] N. Samardzic et al., “F1: A fast and programmable accelerator for fully homomorphic encryption,” Micro 2021
[2] J. Zhang et al., “FLASH: Towards a high-performance hardware acceleration architecture for cross-silo federated
learning,” NSDI 2023

• (2) Design space exploraLon (DSE)
• Using profiled HW requirements & COTS HW components
• Develop dedicated HW using FPGA if necessary
• Commonly used components in HE accelera<on

• Number theore9c transform (NTT)
• Mul9-scalar mul9plica9on (MSM)

HW/SW PlaLorm Design Strategies
• (4) Acceleration via approximate computing
• FL (ML) applications are error tolerant
• HE with approximate computing – enhanced speed,

power efficiency, relaxed HW requirements

18

HE Error Budget

FL Error Budget

Error Tolerance Feedback

Accuracy
Evaluation

Approximate
CompuIng Error

Model

Accuracy-
Performance

Trade-off

HW/SW Platform Design Strategies

19

• (5) Middleware and runtime for optimized usage of
the underlying hardware
• Software stack in HPC environments is critical[1]

• E.g., task scheduling and I/O management
• Memory management policies
• Scheduling of computation, mem usage, and I/O ops.
• Fine-grained control of hardware components
• Balance inference service vs. training/model update (HE)

[1] D. Boehme et al., “Caliper: performance introspec\on for HPC soaware stacks,” SC'16

Strategies as Codesign

20

HE-Enabled FL

HW/SW Co-
Optimization

Approximate
Computing

FL configura9ons,
HE opera9ons

Security/privacy,
ML performance

requirements

Choice of HW components (e.g.,
accelerators, HBM, GPUs,

processing elements)

Efficiency (e.g., latency,
throughput, power)

Accuracy
requirements

Accuracy
loss

Co-
Design

Application Areas
• ML applicaLons with a limited volume of sensiLve,

high-value local data
• No need for FL if the local data volume is enough
• Not worth HE if nonsensi<ve or liZle value data

• FL involving enLLes that can afford the cost of a
dedicated HW/SW pla_orm
• Benefit of placorm > cost of placorm

• Possible applicaLon domains
• Healthcare/medical insurance
• Cri<cal infrastructure (power grids, transporta<on, etc.)
• Intrusion/malware detec<on

21

Thank you for your aNenIon!

Summary
• Privacy-preserving FL with HE is promising
• FL with HE has high mem/computation requirements
• Dedicated SW/HW platform is needed
• FL with HE has great optimization potential in SW/HW
• We plan to address the SW/HW platform design

challenges with the aforementioned five strategies
Contact Information for Further Discussions
• https://hokeun.github.io, hokeun@asu.edu

22

https://hokeun.github.io/
mailto:hokeun@asu.edu

