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Introduction

* Aircraft electric power system (EPS)

— Generation, conversion and distribution of power for
aircraft utilities

— Safety-critical cyber-physical system

— Consists of power generators, buses, contactors, loads
and sensors

— Becoming increasingly more complex
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Introduction (cont’d)

e Characteristics of modern safety-critical cyber-
physical systems

— Consist of heterogeneous components

— Complex systems both in functionalities and
underlying architectures

— Timing behavior is part of correctness
— Validation of reliability is critical



Introduction (cont’d)

* Design challenges

— How can we model heterogeneous components in
safety-critical cyber-physical systems together?

— How can we cope with architectural exploration
problem with complex functionalities?

— How can we validate timing behavior in advance?



Introduction (cont’d)

* Tool integration approach
— Creating a platform for architectural exploration of
safety-critical cyber-physical systems by integrating
Ptolemy Il and Metro |l

* Ptolemy Il

— A system design framework supporting
experimentation with multiple heterogeneous models
of computation (e.g. DE, SDF, SR, etc.)

* Metro ll

— Design environment for platform based design where
the mapping can be easily changed and thus suitable
for architectural exploration




%@h Introduction (cont’d)

* Design challenges revisited

— How can we model heterogeneous components in safety-
critical cyber physical systems together?
e By using Ptolemy Il that supports multiple models of computation

— How can we cope with architectural exploration problem
with complex functionalities?

* By decoupling functional aspects from architectural aspects using
Metro Il

— How can we validate timing behavior in advance?

* By running co-simulation on the integrated platform of Ptolemy Il
and Metro Il




Approach

* Approach overview
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Functional Model
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Generators

* Generate AC power

« May have faulty behaviors
* Main & backup generators

Contactors

* Transfer power from
generators to loads

« Set up control paths

AC Loads

« Always need to be powered
by exactly one generator

« Can be powered off while
generators are replaced



Functional Model (cont’d)

e A supervisory controller for aircraft EPS (Ptolemy Il)

Director

* Implements Synchronous / Reactive

* Metro ll extension
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Functional Model (cont’d)

e Tasks inside of the supervisory controller
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Architectural Model

 Architectural model overview
& interaction with the functional model
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Annotation

Proposed Events
with Annotations

e Metro Il execution semantics
& Co-simulation flow
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X h Architectural Model (cont’d)

* Architectural parameters
— Scheduling overhead
— Priority of tasks

— Speed of processing elements
(or execution times of tasks)

— Parallelization of independent tasks
— Synchronization overhead for parallelized tasks



Experiments and results

 Example architectural alternatives

Scheduling Execution Time (ns) Parallelization Synch
Candidate # | Overhead (ns) ALP/ARP/CSG of ALP & ARP | Overhead (ns)

Shortest )
40/45/20 (=Fastest) Parallellsm
2 10 65/70/40 | Slower Yes Parallel 5]Less
Than #3 : Overhead
3 10 50/55/30 Yes | Processing 4o - - s

* Results
— Ten iterations of functional model with a given test bench

Candidate # | Total Execution Time (ns)

1 1150
2 1250
3 1100| Least Total Execution Time

CPSNA 2013 18



%@h Experiments and results (cont’d)

Measuring co-simulation overhead

— Total simulation time of Ptolemy Il model
e Co-simulation VS Standalone (Ptolemy Il only)

Total execution time (ms)

Measurement of co-simulation overhead
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—— Standalone
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R
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1.58x execution time
= Potential for Scalability




Conclusion

* Summary

— Co-simulation environment supporting
performance prediction and comparison of
architectural candidates for safety-critical cyber
physical systems

— Through a tool integration approach with
* Ptolemy Il — Supports heterogeneous MoCs

* Metro Il — Decouples the modeling of functional
aspects and architectural aspects



Conclusion (cont’d)

e Future work

— Functional model
* More complex safety-critical system examples
* Examples with heterogeneous directors (MoCs)

— Architectural model

* Creating general architectural models

* Considering more architectural parameters (e.g.
memory access overhead, |/O operation overhead)






