

A Tool Integration Approach for Architectural Exploration of Aircraft Electric Power Systems

Hokeun Kim, Liangpeng Guo, Edward A. Lee and Alberto Sangiovanni-Vincentelli

EECS, University of California, Berkeley

The 1st IEEE International Conference on Cyber-Physical Systems, Networks, and Applications Taipei, Taiwan August 19 - 20, 2013

Sponsored by the iCyPhy Research Consortium, a collaboration of UC Berkeley, Caltech, IBM, and United Technologies.

Introduction

- Aircraft electric power system (EPS)
 - Generation, conversion and distribution of power for aircraft utilities
 - Safety-critical cyber-physical system
 - Consists of power generators, buses, contactors, loads and sensors
 - Becoming increasingly more complex
- References
 - K. Emadi and M. Ehsani, "Aircraft power systems: technology, state of the art, and future trends," Aerospace and Electronic Systems Magazine, IEEE, vol. 15, no. 1, pp. 28–32, 2000.
 - L. Guo, M. Maasoumy, M. Mozumdar, P. Nuzzo, N. Ozay, U. Topcu, H. Xu, R. Murray and A.Sangiovanni-Vincentelli, "Aircraft Electric Power System: Description, Specifications and Design Challenges", MuSyC DSCS internal report, March 2012, unpublished

- Characteristics of modern safety-critical cyberphysical systems
 - Consist of heterogeneous components
 - Complex systems both in functionalities and underlying architectures
 - Timing behavior is part of correctness
 - Validation of reliability is critical

- Design challenges
 - How can we model heterogeneous components in safety-critical cyber-physical systems together?
 - How can we cope with architectural exploration problem with complex functionalities?
 - How can we validate timing behavior in advance?

- Tool integration approach
 - Creating a platform for architectural exploration of safety-critical cyber-physical systems <u>by integrating</u> <u>Ptolemy II and Metro II</u>
- Ptolemy II
 - A system design framework supporting experimentation with multiple heterogeneous models of computation (e.g. DE, SDF, SR, etc.)
- Metro II
 - Design environment for platform based design where the mapping can be easily changed and thus suitable for architectural exploration

- Design challenges revisited
 - How can we model heterogeneous components in safetycritical cyber physical systems together?
 - By using <u>Ptolemy II</u> that supports multiple models of computation
 - How can we cope with architectural exploration problem with complex functionalities?
 - By decoupling functional aspects from architectural aspects using <u>Metro II</u>
 - How can we validate timing behavior in advance?
 - By running <u>co-simulation</u> on the integrated platform of Ptolemy II and Metro II

Approach

• Approach overview

Functional Model

• Aircraft EPS specification

Generators

- Generate AC power
- May have faulty behaviors
- Main & backup generators

Contactors

- Transfer power from generators to loads
- Set up control paths

AC Loads

- Always need to be powered by exactly one generator
- Can be powered off while generators are replaced

Functional Model (cont'd)

• A supervisory controller for aircraft EPS (Ptolemy II)

Director

- Implements <u>Synchronous / Reactive</u>
- Metro II extension

Functional Model (cont'd)

Tasks inside of the supervisory controller

ArrangeLeftPath (ALP)

- Selects a generator for Left AC Load
- Based on health status

ArrangeLeftPath

ControlSignalGen (CSG)

- Generate control signals for contactors (B1 ~ B6)
- Based on the generator selections of ALP and ARP

Architectural Model

Architectural model overview
 & interaction with the functional model

- Architectural parameters
 - Scheduling overhead
 - Priority of tasks
 - Speed of processing elements (or execution times of tasks)
 - Parallelization of independent tasks
 - Synchronization overhead for parallelized tasks

Experiments and results

• Example architectural alternatives

Candidate #	Scheduling Overhead (ns)	Execution Time (ns) ALP/ARP/CSG	Parallelization of ALP & ARP	Synch Overhead (ns)
1	10	40/45/20 Shorte (=Fast	est No Para	llelism
2	10	65/70/40 Slower	Yes Para	llel 5 Less
3	10	50/55/30	Yes Proc	essing ¹⁵ Than #3

• Results

Ten iterations of functional model with a given test bench

Candidate #	Total Execution Time (ns)
1	1150
2	1250
3	1100 Least To

Experiments and results (cont'd)

- Measuring co-simulation overhead
 - Total simulation time of Ptolemy II model
 - Co-simulation VS Standalone (Ptolemy II only)

- Linear overhead
- 1.58x execution time

→Potential for Scalability

Conclusion

- Summary
 - <u>Co-simulation</u> environment supporting
 <u>performance prediction</u> and <u>comparison of</u>
 <u>architectural candidates</u> for safety-critical cyber
 physical systems
 - Through a tool integration approach with
 - Ptolemy II Supports heterogeneous MoCs
 - Metro II Decouples the modeling of functional aspects and architectural aspects

Conclusion (cont'd)

- Future work
 - Functional model
 - More complex safety-critical system examples
 - Examples with heterogeneous directors (MoCs)
 - Architectural model
 - Creating general architectural models
 - Considering more architectural parameters (e.g. memory access overhead, I/O operation overhead)

