Empirical Analysis of Security Vulnerabilities
in Open-Source Software Using Static Analysis

Tools

Donghoon Kim, Arkansas State University
Hokeun Kim, Arizona State University

This material is based upon work supported by the National Science Foundation (NSF) under Award No.
OIA-1946391 and POSE-2449200 (An Open-Source Ecosystem to Coordinate Integration of Cyber-Physical
Systems).

"ARIZONA STATE
S\ R BSU0GH

1

Motivation

e Open-source software (OSS) is the backbone of modern
software infrastructure,

" E.g., operating systems, web frameworks, cryptographic
libraries, and data platforms.

e |ts collaborative and transparent development model
accelerates innovation, but small flaws can propagate through
dependency chains and impact many downstream systems.

e Automated vulnerability detection has grown rapidly, and static
analysis tools are widely used

= However, coverage gaps and false alarms still persist.

e This research provides empirical evidence from real projects

and analyzes these tools' strengths and limitations.

f “ ARKANSAS STATE "ARIZONA STATE
ET ITl-I] UNIVERSITY UNIVERSITY

Goals & Research Question (RQ)

e Measure security exposure in actively maintained OSS
" (RQ1) To what extent do actively maintained open source
software (OSS) projects remain exposed to security
vulnerabilities despite the use of widely adopted static
analysis tools?
e |dentify strengths and limits of static analysis
" (RQ2) What types of limitations, such as the omission of
context-specific vulnerabilities or a high rate of false
positives, undermine the practical effectiveness of these
tools in supporting secure software development?
e Validate fixes and observe tool behavior
= Apply remediations and re-scan to see how the tool
responds

f “ ARKANSAS STATE "ARIZONA STATE
ETJJ Tl-l UNIVERSITY UNIVERSITY 3

Contributions of This Work

e This work presents an empirical assessment of security
exposure in open-source software.
= 20 real projects using a mixed quantitative and qualitative
analysis.
e |t characterizes static analysis tools and clearly explains their
limitations.
= Case studies illustrate false positives and context-
dependent vulnerabilities.

"ARIZONA STATE
S\ R BSU0GH

4

Methodology: Project Section

e Open-source projects from the OpenHub platform to ensure
the robustness and generalizability of our analysis
e Selected 20 projects based on the following criteria:
* Programming languages: C/C++ focus; include Java/Python
for breadth
= Activity: recent commits; multiple contributors
" |LOC (Lines of Code): at least 10,000 LOC
o Excluded large projects to prevent analysis failures or
impractical analysis processing time

"ARIZONA STATE
S\ R BSU0GH

5

Static Analysis Tool: SonarQube

e We use SonarQube cloud, a cloud-based service
e SonarQube is configured to import project from GitHub
repositories
= Target repository is forked into the users’s personal
repository
" The forked repository is then linked to SonarQube,
o allowing the platform to automatically initiate static
analysis workflows upon connection.
" Once integrated, SonarQube clones the entire source code
and conduct a comprehensive evaluation.
e Manual validation process is necessary to identify actual
vulnerabilities and eliminate false positive

f “ ARKANSAS STATE "ARIZONA STATE
ETJJ Tl-l UNIVERSITY UNIVERSITY 6

Experimental Study Results

e Table 1is a summary of vulnerabilities based on code quality

metrics identified by SonarQube.
TABLE I: Summary of Open-Source Project Vulnerabilities Detected by SonarQube

Project LOC Contributors Security Reliability Maintainability Security Hotspots
Kamailio 1.IM 542 27 190 29,000 3,400
cURL 202K 1,474 308 45 4,600 1,100
Linux Test Project (LTP) 403K 579 60 709 15,000 2,100
Neat Project 30K 39 2 73 1,200 84
PROJ (Cartographic Library) 271K 215 1 334 15,000 275
Swift Corelibs Foundation 271K 531 3 137 8.600 82
Automotive Grade Linux 41K 195 0 2,300 2,900 3
GRASS GIS Addons 307K 171 13 946 15,000 918
Unity Test 19K 171 0 10 458 5
Lingua Franca (LF) Reactor-C 20K 36 0 31 688 56
SST C API 44K 10 1 18 209 53
Snort3 355K 38 2 171 30,000 599
Zephyr 2.3M 2,800 4 1,700 66 1,700
Kdenlive 214K 200 0 95 11,000 11
dlib C++ Library 445K 216 25 426 24,000 201
HerculesWS 568K 310 0 431 25,000 889
YARP (Robot Platform) 718K 168 31 1,000 42,000 406
uWSGI 102K 377 11 59 6,300 895
DASH C++ 01K 58 0 77 6,900 78
Shed Skin 103K 28 0 615 10,000 152

"ARIZONA STATE
S\ R BSU0GH

Code Quality Metrics in SonarQube

e Security is the protection of the software from unauthorized
access, use, or destruction.
" For example, weak versions of SSL and TLS
e Reliability is a measure of how your software is capable of
maintaining its level of performance
" For example, accessing elements beyond the declared range of
an array.
e Maintainability refers to the ease with which you can repair,
improve and understand software code.
" For example, the datatype is defined incorrectly.
e Security Hotspot highlights security-sensitive code that the
developer needs to review.
" For example, Hard-coded passwords and buffer overflow (e.g.,

strcpy)

f “ ARKANSAS STATE "ARIZONA STATE
ETJJ Tl-l UNIVERSITY UNIVERSITY 8

Correlation Analysis of Software Quality Metrics

(0.82) between LOC and the =
number of contribution
e A moderate positive
correlation (0.61) between =
LOC and security hotspots
e A moderate correlation
(0.45) between contributors -
and security issues
= Anincrease in contributor
count may be associated :
with a slight rise in
security issues

EF@FE ARKANSAS STATE %®ARIZONA STATE
] UNIVERSITY UNIVERSITY ’

o A St rong pOSitive CO rrelation Correlation Matrix of SonarQube Metrics I10

Contributors

-0.6

-0.4

Reliability -

-0.2

I00

)
N
w

Reliability
Maintainability -

)
]
[o]
[oN
7]
o
o
II
>
i
=

Contributors -

Secu

Contributors and Security Issues

e Correlation coefficient is 0.45

(weak to moderate positive)

e Implication: having more

contributors does not guarantee:, |

safer code; :

" Process and guardrails matter
more than headcount.

rity

f Secu

$ 150
(o]
o

Numb

100 4

50 A

0_

0 500 1000 1500 2000 2500

* Example contrast: NamberofCotrutor
A highly popular project (cURL) can have many issues
(J Even more contributors (Zephyr) can have few, showing the
relationship isn’t linear.

"ARIZONA STATE
S\ R BSU O -

LOC vs Security Vulnerabilities

e Show almost no >
correlation (~0.00):
project size does not
predict vulnerability
count

e Implication: big project .,
can be clean; small (O reaco

50

project can still be risky. 0 o T o 5

: ey o @% 0 O
e Security vulnerabilities .,

Lines of Code (LOC) 1e6
are more related to
engineering practices Bubble size represents contributor count.

250

200

150

Numbggf Security Vulnerabilities

(safe APlIs, reviews, Cl
gates), not size

"ARIZONA STATE
EFMFE ONIVERSITY %UNIVERSI%Y B

Summary of Findings and Answer to RQ1

e (RQ1) To what extent do actively maintained open source
software (OSS) projects remain exposed to security
vulnerabilities despite the use of widely adopted static
analysis tools?

e Bigger projects show more security hotspots;

e More contributors do not guarantee safety;

e Maintainability/reliability are only weakly related to size.

e Answer to RQ1: Actively maintained OSS still has non-trivial
vulnerabilities

e |In addition, static analysis alone is not enough; it must be
paired with secure coding and code reviews.

f “ ARKANSAS STATE "ARIZONA STATE
ETJJ F UNIVERSITY UNIVERSITY .

Case Studies

e Purpose: To clarify the practical implications of static analysis
(SonarQube) capabilities and limitations.
e This work presents four case studies based on real findings
from analyses of open-source projects.
e For precise remediation and verification via re-scan, the case
studies use open-source projects that we can modify:
= Secure Swam Toolkit (SST) C API
" Lingua Franca (LF) Reactor-C.

f “ ARKANSAS STATE "ARIZONA STATE
ETJJ F UNIVERSITY UNIVERSITY "

Case Study 1: Unsafe C string API

* Problem: Static analysis flagged uses of “sprintf” / similar unsafe
string function; buffer overflow risk (CWE-119)
char str[6];
sprintf (str, "%u", used port);
e Fix: This work replaced them with bounded alternatives (e.g.,
snprintf) and used helper wrappers to enforce length checks.
char str[6];

snprintf (str, sizeof (str),"su", used port);

e Scope: 10 instances fixed in SST C APl and 4 in LF Reactor-C
e OQutcome: A re-scan removed the findings, confirming the fix
worked.

"ARIZONA STATE
S\ R BSUNT

Case Study 2 & 3: Crypto Fixes

e Case Study 2: Weak Randomness (PRNG; Pseudo Random Number Generator)
= Problem: rand() used for security-sensitive values
o Predictable, not CSPRNG (Cryptographically Secure PRNG)
= Fix: switch to OS/library CSPRNG (e.g., OpenSSL RAND _bytes)
= Qutcome: warning cleared on re-scan; security posture improved
= Lesson: policy—no rand() in security paths; provide a safe RNG helper
e Case Study 3: Weak Asymmetric Cryptography (RSA)
= Problem: legacy padding (e.g., RSA_PKCS1 PADDING) - weaker security
defaults
= Fix: adopt RSA_PKCS1 OAEP_PADDING; centralize via crypto wrapper with
safe defaults
= Qutcome: hotspot removed; interoperability preserved (downstream
clients)
= Lesson: “secure-by-default” wrappers; Cl gate to block unsafe crypto

settings

E'ﬂ? “F ARKANSAS STATE " ARIZONA STATE
UNIVERSITY UNIVERSITY .

Case Study 4: Typical False Positive

e Unsafe use of strcpy, strncpy, and strlen
= Buffer overflow

e In SST C API, SonarQube flagged the use of strcpy and strncpy

strncpy (dest, src, dest size)

e Best practices by adding the last element of the char array to
the null character (0)

dest[dest size - 1] = 0;
strncpy (dest, src, dest size);
if (dest[dest size - 1] != 0) {
print error exit ("Problem foundAn");

}
e SonarQube continued to mark the snippet as a security hotspot

" |nsufficient handling of context such as defensive sentinel
checks.

"ARIZONA STATE
EFMFE ONIVERSITY %UI\HVERSI%Y ”

Summary of Findings and Answer to RQ2

e Static analysis is effective at catching straightforward issues (e.g.,
unsafe C string APIs, weak randomness, legacy RSA settings),

e However, it struggles with context-dependent and produces
notable false positives (e.g., strncpy/strlen).

e RQ2: What types of limitations, such as the omission of context-
specific vulnerabilities or a high rate of false positives,
undermine the practical effectiveness of these tools in
supporting secure software development?

e Answer to RQ2:

= Static analysis alone is insufficient for practical assurance.
= |t should be paired with secure-by-default APls, and human
code review to translate findings into reliable fixes.

E'ﬂ? “'ﬂ' ARKANSAS STATE " ARIZONA STATE
UNIVERSITY UNIVERSITY .

Conclusion

e This work shows that static analysis tools reliably catch clear,
pattern-based issues but often miss vulnerabilities that depend
on code context.

e Larger codebases and teams tend to create more review
hotspots, yet size and headcount do not guarantee safer
software.

e Human code review and rule tuning are necessary to reduce
false positives and maintain developer trust.

e Future work will expand the set of projects and tools, perform
cross-validation, and strengthen practical guardrails in typical
workflows.

E'ﬂ? “'ﬂ' ARKANSAS STATE " ARIZONA STATE
UNIVERSITY UNIVERSITY s

