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Motivation

• Open-source software (OSS) is the backbone of modern 
software infrastructure, 
§ E.g., operating systems, web frameworks, cryptographic 

libraries, and data platforms.
• Its collaborative and transparent development model 

accelerates innovation, but small flaws can propagate through 
dependency chains and impact many downstream systems.

• Automated vulnerability detection has grown rapidly, and static 
analysis tools are widely used
§ However, coverage gaps and false alarms still persist.

• This research provides empirical evidence from real projects 
and analyzes these tools' strengths and limitations.
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Goals & Research Question (RQ)

• Measure security exposure in actively maintained OSS
§ (RQ1) To what extent do actively maintained open source 

software (OSS) projects remain exposed to security 
vulnerabilities despite the use of widely adopted static 
analysis tools? 

• Identify strengths and limits of static analysis
§ (RQ2) What types of limitations, such as the omission of 

context-specific vulnerabilities or a high rate of false 
positives, undermine the practical effectiveness of these 
tools in supporting secure software development?

• Validate fixes and observe tool behavior
§ Apply remediations and re-scan to see how the tool 

responds
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Contributions of This Work 

• This work presents an empirical assessment of security 
exposure in open-source software.
§ 20 real projects using a mixed quantitative and qualitative 

analysis.
• It characterizes static analysis tools and clearly explains their 

limitations.
§ Case studies illustrate false positives and context-

dependent vulnerabilities.
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Methodology: Project Section

• Open-source projects from the OpenHub platform to ensure 
the robustness and generalizability of our analysis

• Selected 20 projects based on the following criteria:
§ Programming languages: C/C++ focus; include Java/Python 

for breadth
§ Activity: recent commits; multiple contributors
§ LOC (Lines of Code): at least 10,000 LOC
o Excluded large projects to prevent analysis failures or 

impractical analysis processing time 
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Static Analysis Tool: SonarQube

• We use SonarQube cloud, a cloud-based service 
• SonarQube is configured to import project from GitHub 

repositories
§ Target repository is forked into the users’s personal 

repository
§ The forked repository is then linked to SonarQube, 
o allowing the platform to automatically initiate static 

analysis workflows upon connection. 
§ Once integrated, SonarQube clones the entire source code 

and conduct a comprehensive evaluation. 
• Manual validation process is necessary to identify actual 

vulnerabilities and eliminate false positive
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Experimental Study Results

• Table 1 is a summary of vulnerabilities based on code quality 
metrics identified by SonarQube. 
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Code Quality Metrics in SonarQube

• Security is the protection of the software from unauthorized 
access, use, or destruction. 
§ For example, weak versions of SSL and TLS

• Reliability is a measure of how your software is capable of 
maintaining its level of performance
§ For example, accessing elements beyond the declared range of 

an array. 
• Maintainability refers to the ease with which you can repair, 

improve and understand software code. 
§ For example, the datatype is defined incorrectly. 

• Security Hotspot highlights security-sensitive code that the 
developer needs to review. 
§ For example, Hard-coded passwords and buffer overflow (e.g., 

strcpy)
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Correlation Analysis of Software Quality Metrics

• A strong positive correlation 
(0.82) between LOC and the 
number of contribution

• A moderate positive 
correlation (0.61) between 
LOC and security hotspots

• A moderate correlation 
(0.45) between contributors 
and security issues
§ An increase in contributor 

count may be associated 
with a slight rise in 
security issues 
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Contributors and Security Issues

• Correlation coefficient is 0.45
(weak to moderate positive)

• Implication: having more 
contributors does not guarantee 
safer code; 
§ Process and guardrails matter 

more than headcount.
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• Example contrast: 
q A highly popular project (cURL) can have many issues
q Even more contributors (Zephyr) can have few, showing the 

relationship isn’t linear.



LOC vs Security Vulnerabilities 

• Show almost no 
correlation (~0.00): 
project size does not 
predict vulnerability 
count

• Implication: big project 
can be clean; small 
project can still be risky. 

• Security vulnerabilities 
are more related to 
engineering practices 
(safe APIs, reviews, CI 
gates), not size

11

Bubble size represents contributor count.



Summary of Findings and Answer to RQ1

• (RQ1) To what extent do actively maintained open source 
software (OSS) projects remain exposed to security 
vulnerabilities despite the use of widely adopted static 
analysis tools? 

• Bigger projects show more security hotspots; 
• More contributors do not guarantee safety;
• Maintainability/reliability are only weakly related to size.
• Answer to RQ1: Actively maintained OSS still has non-trivial 

vulnerabilities
• In addition, static analysis alone is not enough; it must be 

paired with secure coding and code reviews.
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Case Studies

• Purpose: To clarify the practical implications of static analysis 
(SonarQube) capabilities and limitations. 

• This work presents four case studies based on real findings 
from analyses of open-source projects. 

• For precise remediation and verification via re-scan, the case 
studies use open-source projects that we can modify: 
§ Secure Swam Toolkit (SST) C API 
§ Lingua Franca (LF) Reactor-C.
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Case Study 1: Unsafe C string API

• Problem: Static analysis flagged uses of “sprintf” / similar unsafe 
string function; buffer overflow risk (CWE-119) 
char str[6];
sprintf(str, "%u", used_port);

• Fix: This work replaced them with bounded alternatives (e.g., 
snprintf) and used helper wrappers to enforce length checks. 
char str[6];
snprintf(str, sizeof(str),"%u", used_port);

• Scope: 10 instances fixed in SST C API and 4 in LF Reactor-C
• Outcome: A re-scan removed the findings, confirming the fix 

worked. 
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Case Study 2 & 3: Crypto Fixes
• Case Study 2: Weak Randomness (PRNG; Pseudo Random Number Generator)

§ Problem: rand() used for security-sensitive values
o Predictable, not CSPRNG (Cryptographically Secure PRNG)

§ Fix: switch to OS/library CSPRNG (e.g., OpenSSL RAND_bytes)
§ Outcome: warning cleared on re-scan; security posture improved
§ Lesson: policy—no rand() in security paths; provide a safe RNG helper

• Case Study 3: Weak Asymmetric Cryptography (RSA)
§ Problem: legacy padding (e.g., RSA_PKCS1_PADDING) → weaker security 

defaults
§ Fix: adopt RSA_PKCS1_OAEP_PADDING; centralize via crypto wrapper with 

safe defaults
§ Outcome: hotspot removed; interoperability preserved (downstream 

clients)
§ Lesson: “secure-by-default” wrappers; CI gate to block unsafe crypto 

settings
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Case Study 4: Typical False Positive 

• Unsafe use of strcpy, strncpy, and strlen 
§ Buffer overflow 

• In SST C API, SonarQube flagged the use of strcpy and strncpy
strncpy(dest, src, dest_size)

• Best practices by adding the last element of the char array to 
the null character (0)
dest[dest_size - 1] = 0;
strncpy(dest, src, dest_size);
if (dest[dest_size - 1] != 0) {
 print_error_exit("Problem found ....Än");
}

• SonarQube continued to mark the snippet as a security hotspot
§ Insufficient handling of context such as defensive sentinel 

checks.
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Summary of Findings and Answer to RQ2

• Static analysis is effective at catching straightforward issues (e.g., 
unsafe C string APIs, weak randomness, legacy RSA settings), 

• However, it struggles with context-dependent and produces 
notable false positives (e.g., strncpy/strlen).

• RQ2: What types of limitations, such as the omission of context-
specific vulnerabilities or a high rate of false positives, 
undermine the practical effectiveness of these tools in 
supporting secure software development?

• Answer to RQ2: 
§ Static analysis alone is insufficient for practical assurance. 
§ It should be paired with secure-by-default APIs, and human 

code review to translate findings into reliable fixes.
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Conclusion

• This work shows that static analysis tools reliably catch clear, 
pattern-based issues but often miss vulnerabilities that depend 
on code context.

• Larger codebases and teams tend to create more review 
hotspots, yet size and headcount do not guarantee safer 
software.

• Human code review and rule tuning are necessary to reduce 
false positives and maintain developer trust.

• Future work will expand the set of projects and tools, perform 
cross-validation, and strengthen practical guardrails in typical 
workflows.
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