
Empirical Analysis of Security Vulnerabilities
in Open-Source Software Using Static Analysis
Tools

Donghoon Kim, Arkansas State University
Hokeun Kim, Arizona State University

1

This material is based upon work supported by the National Science Foundation (NSF) under Award No.
OIA-1946391 and POSE-2449200 (An Open-Source Ecosystem to Coordinate Integration of Cyber-Physical
Systems).

Motivation

• Open-source software (OSS) is the backbone of modern
software infrastructure,
§ E.g., operating systems, web frameworks, cryptographic

libraries, and data platforms.
• Its collaborative and transparent development model

accelerates innovation, but small flaws can propagate through
dependency chains and impact many downstream systems.

• Automated vulnerability detection has grown rapidly, and static
analysis tools are widely used
§ However, coverage gaps and false alarms still persist.

• This research provides empirical evidence from real projects
and analyzes these tools' strengths and limitations.

2

Goals & Research Question (RQ)

• Measure security exposure in actively maintained OSS
§ (RQ1) To what extent do actively maintained open source

software (OSS) projects remain exposed to security
vulnerabilities despite the use of widely adopted static
analysis tools?

• Identify strengths and limits of static analysis
§ (RQ2) What types of limitations, such as the omission of

context-specific vulnerabilities or a high rate of false
positives, undermine the practical effectiveness of these
tools in supporting secure software development?

• Validate fixes and observe tool behavior
§ Apply remediations and re-scan to see how the tool

responds

3

Contributions of This Work

• This work presents an empirical assessment of security
exposure in open-source software.
§ 20 real projects using a mixed quantitative and qualitative

analysis.
• It characterizes static analysis tools and clearly explains their

limitations.
§ Case studies illustrate false positives and context-

dependent vulnerabilities.

4

Methodology: Project Section

• Open-source projects from the OpenHub platform to ensure
the robustness and generalizability of our analysis

• Selected 20 projects based on the following criteria:
§ Programming languages: C/C++ focus; include Java/Python

for breadth
§ Activity: recent commits; multiple contributors
§ LOC (Lines of Code): at least 10,000 LOC
o Excluded large projects to prevent analysis failures or

impractical analysis processing time

5

Static Analysis Tool: SonarQube

• We use SonarQube cloud, a cloud-based service
• SonarQube is configured to import project from GitHub

repositories
§ Target repository is forked into the users’s personal

repository
§ The forked repository is then linked to SonarQube,
o allowing the platform to automatically initiate static

analysis workflows upon connection.
§ Once integrated, SonarQube clones the entire source code

and conduct a comprehensive evaluation.
• Manual validation process is necessary to identify actual

vulnerabilities and eliminate false positive

6

Experimental Study Results

• Table 1 is a summary of vulnerabilities based on code quality
metrics identified by SonarQube.

7

Code Quality Metrics in SonarQube

• Security is the protection of the software from unauthorized
access, use, or destruction.
§ For example, weak versions of SSL and TLS

• Reliability is a measure of how your software is capable of
maintaining its level of performance
§ For example, accessing elements beyond the declared range of

an array.
• Maintainability refers to the ease with which you can repair,

improve and understand software code.
§ For example, the datatype is defined incorrectly.

• Security Hotspot highlights security-sensitive code that the
developer needs to review.
§ For example, Hard-coded passwords and buffer overflow (e.g.,

strcpy)

8

Correlation Analysis of Software Quality Metrics

• A strong positive correlation
(0.82) between LOC and the
number of contribution

• A moderate positive
correlation (0.61) between
LOC and security hotspots

• A moderate correlation
(0.45) between contributors
and security issues
§ An increase in contributor

count may be associated
with a slight rise in
security issues

9

Contributors and Security Issues

• Correlation coefficient is 0.45
(weak to moderate positive)

• Implication: having more
contributors does not guarantee
safer code;
§ Process and guardrails matter

more than headcount.

10

• Example contrast:
q A highly popular project (cURL) can have many issues
q Even more contributors (Zephyr) can have few, showing the

relationship isn’t linear.

LOC vs Security Vulnerabilities

• Show almost no
correlation (~0.00):
project size does not
predict vulnerability
count

• Implication: big project
can be clean; small
project can still be risky.

• Security vulnerabilities
are more related to
engineering practices
(safe APIs, reviews, CI
gates), not size

11

Bubble size represents contributor count.

Summary of Findings and Answer to RQ1

• (RQ1) To what extent do actively maintained open source
software (OSS) projects remain exposed to security
vulnerabilities despite the use of widely adopted static
analysis tools?

• Bigger projects show more security hotspots;
• More contributors do not guarantee safety;
• Maintainability/reliability are only weakly related to size.
• Answer to RQ1: Actively maintained OSS still has non-trivial

vulnerabilities
• In addition, static analysis alone is not enough; it must be

paired with secure coding and code reviews.

12

Case Studies

• Purpose: To clarify the practical implications of static analysis
(SonarQube) capabilities and limitations.

• This work presents four case studies based on real findings
from analyses of open-source projects.

• For precise remediation and verification via re-scan, the case
studies use open-source projects that we can modify:
§ Secure Swam Toolkit (SST) C API
§ Lingua Franca (LF) Reactor-C.

13

Case Study 1: Unsafe C string API

• Problem: Static analysis flagged uses of “sprintf” / similar unsafe
string function; buffer overflow risk (CWE-119)
char str[6];
sprintf(str, "%u", used_port);

• Fix: This work replaced them with bounded alternatives (e.g.,
snprintf) and used helper wrappers to enforce length checks.
char str[6];
snprintf(str, sizeof(str),"%u", used_port);

• Scope: 10 instances fixed in SST C API and 4 in LF Reactor-C
• Outcome: A re-scan removed the findings, confirming the fix

worked.

14

Case Study 2 & 3: Crypto Fixes
• Case Study 2: Weak Randomness (PRNG; Pseudo Random Number Generator)

§ Problem: rand() used for security-sensitive values
o Predictable, not CSPRNG (Cryptographically Secure PRNG)

§ Fix: switch to OS/library CSPRNG (e.g., OpenSSL RAND_bytes)
§ Outcome: warning cleared on re-scan; security posture improved
§ Lesson: policy—no rand() in security paths; provide a safe RNG helper

• Case Study 3: Weak Asymmetric Cryptography (RSA)
§ Problem: legacy padding (e.g., RSA_PKCS1_PADDING) → weaker security

defaults
§ Fix: adopt RSA_PKCS1_OAEP_PADDING; centralize via crypto wrapper with

safe defaults
§ Outcome: hotspot removed; interoperability preserved (downstream

clients)
§ Lesson: “secure-by-default” wrappers; CI gate to block unsafe crypto

settings

15

Case Study 4: Typical False Positive

• Unsafe use of strcpy, strncpy, and strlen
§ Buffer overflow

• In SST C API, SonarQube flagged the use of strcpy and strncpy
strncpy(dest, src, dest_size)

• Best practices by adding the last element of the char array to
the null character (0)
dest[dest_size - 1] = 0;
strncpy(dest, src, dest_size);
if (dest[dest_size - 1] != 0) {
 print_error_exit("Problem foundÄn");
}

• SonarQube continued to mark the snippet as a security hotspot
§ Insufficient handling of context such as defensive sentinel

checks.

16

Summary of Findings and Answer to RQ2

• Static analysis is effective at catching straightforward issues (e.g.,
unsafe C string APIs, weak randomness, legacy RSA settings),

• However, it struggles with context-dependent and produces
notable false positives (e.g., strncpy/strlen).

• RQ2: What types of limitations, such as the omission of context-
specific vulnerabilities or a high rate of false positives,
undermine the practical effectiveness of these tools in
supporting secure software development?

• Answer to RQ2:
§ Static analysis alone is insufficient for practical assurance.
§ It should be paired with secure-by-default APIs, and human

code review to translate findings into reliable fixes.

17

Conclusion

• This work shows that static analysis tools reliably catch clear,
pattern-based issues but often miss vulnerabilities that depend
on code context.

• Larger codebases and teams tend to create more review
hotspots, yet size and headcount do not guarantee safer
software.

• Human code review and rule tuning are necessary to reduce
false positives and maintain developer trust.

• Future work will expand the set of projects and tools, perform
cross-validation, and strengthen practical guardrails in typical
workflows.

18

