
SHIELD: Encrypting Persistent Data of LSM-KVS

from Monolithic to Disaggregated Storage

Viraj Thakkar1, Dongha Kim1, Yingchun Lai2, Hokeun Kim1, Zhichao Cao1

1Arizona State University, 2Apache Pegasus (Incubating) Community

ENCFS (DISTRIBUTED) & SHIELD (DISAGGREGATED STORAGE)

Plaintext LSM-KVS files on multiple servers with 

untrusted applications and large attack surface.

Arizona State University

Intelligent Data Infrastructure Lab
ASU-IDI

github.com/asu-idi asu-idi.github.io

MOTIVATIONTHREAT MODEL
• LSM-KVS in disaggregation has components (compaction, storage, WAL) across 

servers. Solution must be flexible to disaggregated setups.

• Data Encryption Key (DEK) practices (Unique DEK per file and DEK-

rotation) necessary for robust protection in disaggregation. 

• SOTA presents high overhead (350-3,750%) from using hardware-based TEEs. 

It’s focus on in-memory protection misses bottlenecks (WAL-write), while using 

a single DEK.

CHALLENGES
1. How and where to embed DEK-practices in LSM-KVS?

2. How to mitigate the WAL-Write Encryption Bottleneck?

3. How to co-ordinate DEK/LSM-file relationship for flexible setups?

EncFS (For Monolith and Distributed):

• Intercept IO to/from FS to enable transparent encryption in LSM-KVS.

• Simple solution but DEK leak can compromise all data.

• For servers completely in your control. Can be killed on-demand.

EVALUATION RESULTS DISCUSSION
• We use 128-bit AES in CTR mode for 

encryption. SHIELD is compatible with other 

encryption algorithms.

• The solution comes with 0-36% overhead. 

Encryption has a cost. SHIELD aims to avoid 

the penalty and reduce round trips.

• We promise updates for 3 RocksDB major 

revisions for the SHIELD codebase.

FUTURE WORK
• What’s the deal with TEEs? SOTA suffers high 

penalties, can TEE-penalty be avoided? 

Exploration needed.

• SHIELD focuses of DS. Disaggregated 

Memory with CXL or RDMA devices will be 

intriguing future work.

SHIELD (For Disaggregated):

• SST encrypted after LSM block chunking. And integration into 

Compaction path for DEK-rotation.

• Size-configurable WAL-buffer to mitigate WAL-bottleneck

• Decentralized key distribution service (e.g., SSToolkit, Kerberos) for 

DEK provision the utilizes unique DEK identifiers.

• Local DEK-cache secured with user-selected password for other LSM 

instances to use, avoiding network round-trips.

• DEK-identifiers stored in LSM-KVS files’ metadata. Authorized 

servers avoid lookup tables, requesting DEK from KDS for passive and 

flexible DEK sharing. 

16-33% (EncFS)
19-36% (SHIELD)

0-1%
0-2% 3-6%

6-14%

Disaggregated StorageMonolith Setup

Converging Trend for EncFS & SHIELD
Compatible with different 

Compaction Styles


