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THREAT MODEL MOTIVATION

Plaintext LSM-KVS files on multiple servers with  LSM-KVS in disaggregation has components (compaction, storage, WAL) across
untrusted applications and large attack surface. servers. Solution must be flexible to disaggregated setups.
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ENCFS (DISTRIBUTED) & SHIELD (DISAGGREGATED STORAGE)
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>l * Decentralized key distribution service (e.g., SSToolkit, Kerberos) for

Decentralized

T : Jh [Secure DEr cache ﬂ] KBS I3 DEK provision the utilizes unique DEK identifiers.

\ ; . - * Local DEK-cache secured with user-selected password for other LSM

Storage Pool ) instances to use, avoiding network round-trips.
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EVALUATION RESULTS

P72 Unencrypted RocksDB <3 Unencrypted RocksDB + WAL-Buf ENcFS EncFS + WAL-Buf  E==1 SHIELD SHIELD + WAL-Buf e  We use 128-bit AES in CTR mode for
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I§ 7)19-36% (SHIELD) 0-2% | - encryption. SHIELD is compatible with other
“I” q po oford ° °
§E§ 'g;;: SIENy oo %ig : A encryption algorithms.
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write, read) ratio _ {vrite, read) ratlo Encryption has a cost. SHIELD aims to avoid
Monolith Setup Disaggregated Storage h 1 d red d tr

Converging Trend for EncFS & SHIELD the pend Fy and reduce roun trlPS' .
Compatible with different * We promise updates for 3 RocksDB major

Unencrypted RocksDB EncF5S SHIELD

-+4- Unencrypted RocksDB + WAL-Buf —A— EncFS + WAL-Buf —»— SHIELD + WAL-Buf Compaction Styles revisions for the SHIELD codebase.

Ak FUTURE WORK

e — & N e ] : * What’s the deal with TEEs? SOTA suffers high
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