. SHIELD: Encrypting Persistent Data of LSM-KVS
{Q/ ,# from Monolithic to Disaggregated Storage

n§

Viraj Thakkar!, Dongha Kim!, Yingchun Lai?, Hokeun Kim!, Zhichao Cao!

!Arizona State University, “Apache Pegasus (Incubating) Community

THREAT MODEL MOTIVATION

Plaintext LSM-KVS files on multiple servers with LSM-KVS in disaggregation has components (compaction, storage, WAL) across
untrusted applications and large attack surface. servers. Solution must be flexible to disaggregated setups.

wite @ 5[memtable |--on_y[immuiabl * Data Encryption Key (DEK) practices. (Upiqge DEK per file and DEK-
fush memory rotation) necessary for robust protection in disaggregation.
O | vl e * SOTA presents high overhead (350-3,750%) from using hardware-based TEEs.
3 ¥ p— It’s focus on 1n-memory protection misses bottlenecks (WAL-write), while using

O wal | € o . storage a single DEK.

e -, compaction

® User with legitimate Server L1 SST r:’ SST |
e — L,) (e G CHALLENGES
Oulakle Astacker gainig L Py e e | 1. How and where to embed DEK-practices in LSM-KVS?
2. How to mitigate the WAL-Write Encryption Bottleneck?

File located on untrusted

D Server/Storage device L(n) ST 3. HOW t() CO-Ol’dinate DEK/LSM'ﬁle relatiOnShip fOI’ ﬂeXible SetupS?

ENCFS (DISTRIBUTED) & SHIELD (DISAGGREGATED STORAGE)

EncFS (For Monolith and Distributed): write| Aread
* Intercept 10 to/from FS to enable transparent encryption in LSM-KVS. (Lsm-KVS Instance v | 1 [LsM-Kvs | LSM-KVS
* Simple solution but DEK leak can compromise all data. LSM-KVS in-memory components (IMC) '"EEEE '”EE'::EE

* For servers completely in your control. Can be killed on-demand. iWAL- fush lt:.:.mpacum lManifEEt- ‘Fead A A

writes writes
write Aread E— IOE © 0o IOE
(Compute Pool ||) LSM-KVS I/O Engine (IOE) o 3

(Server \ : DEK: Data Encryption Key’ 1 TEM l<b--- ---1»{ TEM
¢ N | KDS: Key Distribution : A - A
LSM-KVS Instance \|: Service : ﬁ X ﬁ
\ 4 (v : EDM: Encryption and : Transparent Encryption Module (TEM) < | !
[LSM-KVS in-memory components] user DEK 5 Decryption Module user-provided data
D | | A ARt | a’
¥

lWAL- Fush Acﬂmpactiun Manifest tond \) encryption key (DEK)
. Y Y

writes writes v Unauthorized W ‘ \ - \
WAL (EDMS)<- Server = Other Encrypted LSM-KVS Persistent files
Buffer _ | EDMd)< processes & <X [waLf SsT conf £}
[EDM3)< DEK | | k
()72 T LR SUUURURNY IPTOP manager Server N | — N < S g
m .. x Read Dnl}.‘ LSM_ SHIELD (FO’/’ Disaggregated) :
A A | KVS Instance o : : -
v v Y . * SST encrypted after LSM block chunking. And integration into

. A i |), Tered Smrige | Compaction path for DEK-rotation.
v R R | " ’ * Size-configurable WAL-buffer to mitigate WAL-bottleneck

— Local Storage D : : : : : :
>l * Decentralized key distribution service (e.g., SSToolkit, Kerberos) for

Decentralized

T : Jh [Secure DEr cache ﬂ] KBS I3 DEK provision the utilizes unique DEK identifiers.

\ ; . - * Local DEK-cache secured with user-selected password for other LSM

Storage Pool) instances to use, avoiding network round-trips.
. ['r * ° ° ° °
< Disaggregated Storage > Server y) e DEK-identifiers stored in LSM-KVS files’ metadata. Authorized

-

- Offloaded Compaction €—>| Decentralized : : :
WAL ﬁ SST (3] 5| manifest @ « KDS servers avold lookup tables, requesting DEK from KDS for passive and
L

DISCUSSION

Tiered Storage <€—»

T — X) flexible DEK sharing.

\ .

EVALUATION RESULTS

P72 Unencrypted RocksDB <3 Unencrypted RocksDB + WAL-Buf ENcFS EncFS + WAL-Buf E==1 SHIELD SHIELD + WAL-Buf e We use 128-bit AES in CTR mode for

16-33% (EncFS) 0-1% 6-14% : . . .

I§ 7)19-36% (SHIELD) 0-2% | - encryption. SHIELD is compatible with other
“I” q po oford ° °
§E§ 'g;;: SIENy oo %ig : A encryption algorithms.

HEHONEE R O E 5 B N o N B e Th luti th 0-36% head

te. read) rati . . . : :
write, read) ratio _ {vrite, read) ratlo Encryption has a cost. SHIELD aims to avoid
Monolith Setup Disaggregated Storage h 1 d red d tr

Converging Trend for EncFS & SHIELD the pend Fy and reduce roun trlPS' .
Compatible with different * We promise updates for 3 RocksDB major

Unencrypted RocksDB EncF5S SHIELD

-+4- Unencrypted RocksDB + WAL-Buf —A— EncFS + WAL-Buf —»— SHIELD + WAL-Buf Compaction Styles revisions for the SHIELD codebase.

Ak FUTURE WORK

e — & N e] : * What’s the deal with TEEs? SOTA suffers high
_ 50 100 200 500 1000 Level Universal FIFO .
No. of Writer Threads Value Size (Bytes) FILLRANDOM penalties, can TEE-penalty be avoided?
-3-- Unencrypted RocksDB —+— EncFS —€— SHIELD EXplOI’athIl needed
— 9 ' :
T SHIELD focuses of DS. Disaggregated
ot Memory with CXL or RDMA devices will be

| L] 1 1 |]]] 0 — "
0 256 512 1024 2048 0 256 512 1024 2048 Level Universal ST
Buffer Size (Bytes) Buffer Size (Bytes) READRANDOM 1ntr1gu1ng future work.

3-6%

-
o
o

N
o
| ¥,

Throughput
(kops/s)

——

Throughput
(kops/s)

NN

SINNNNNN
wu

L

un
-
o
MJ
-
-

4

Throughput
(kops/s)

(kops/s)

M
un
-

Throughput

Throughput
(kops/s)

o

=
o

=
o
-

Y e i

—
—
= =
-—
-

s

—

-7
'_._,_r

Throughput
(kops/s)

Throughput
(kops/s)

MO

P99 (ms)
o @

(W
o
o

Arizona State University ASTU-ID] »

Intelligent Data Infrastructure Lab github.com/asu-idi asu-idi.github.io

